| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mptfzshft | Unicode version | ||
| Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) | 
| Ref | Expression | 
|---|---|
| mptfzshft.1 | 
 | 
| mptfzshft.2 | 
 | 
| mptfzshft.3 | 
 | 
| Ref | Expression | 
|---|---|
| mptfzshft | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. 2
 | |
| 2 | elfzelz 10100 | 
. . . 4
 | |
| 3 | 2 | adantl 277 | 
. . 3
 | 
| 4 | mptfzshft.1 | 
. . . 4
 | |
| 5 | 4 | adantr 276 | 
. . 3
 | 
| 6 | 3, 5 | zsubcld 9453 | 
. 2
 | 
| 7 | elfzelz 10100 | 
. . . 4
 | |
| 8 | 7 | adantl 277 | 
. . 3
 | 
| 9 | 4 | adantr 276 | 
. . 3
 | 
| 10 | 8, 9 | zaddcld 9452 | 
. 2
 | 
| 11 | simprr 531 | 
. . . . . . . 8
 | |
| 12 | 11 | oveq1d 5937 | 
. . . . . . 7
 | 
| 13 | 2 | ad2antrl 490 | 
. . . . . . . 8
 | 
| 14 | 4 | adantr 276 | 
. . . . . . . 8
 | 
| 15 | zcn 9331 | 
. . . . . . . . 9
 | |
| 16 | zcn 9331 | 
. . . . . . . . 9
 | |
| 17 | npcan 8235 | 
. . . . . . . . 9
 | |
| 18 | 15, 16, 17 | syl2an 289 | 
. . . . . . . 8
 | 
| 19 | 13, 14, 18 | syl2anc 411 | 
. . . . . . 7
 | 
| 20 | 12, 19 | eqtr2d 2230 | 
. . . . . 6
 | 
| 21 | simprl 529 | 
. . . . . 6
 | |
| 22 | 20, 21 | eqeltrrd 2274 | 
. . . . 5
 | 
| 23 | mptfzshft.2 | 
. . . . . . 7
 | |
| 24 | 23 | adantr 276 | 
. . . . . 6
 | 
| 25 | mptfzshft.3 | 
. . . . . . 7
 | |
| 26 | 25 | adantr 276 | 
. . . . . 6
 | 
| 27 | 13, 14 | zsubcld 9453 | 
. . . . . . 7
 | 
| 28 | 11, 27 | eqeltrd 2273 | 
. . . . . 6
 | 
| 29 | fzaddel 10134 | 
. . . . . 6
 | |
| 30 | 24, 26, 28, 14, 29 | syl22anc 1250 | 
. . . . 5
 | 
| 31 | 22, 30 | mpbird 167 | 
. . . 4
 | 
| 32 | 31, 20 | jca 306 | 
. . 3
 | 
| 33 | simprr 531 | 
. . . . 5
 | |
| 34 | simprl 529 | 
. . . . . 6
 | |
| 35 | 23 | adantr 276 | 
. . . . . . 7
 | 
| 36 | 25 | adantr 276 | 
. . . . . . 7
 | 
| 37 | 7 | ad2antrl 490 | 
. . . . . . 7
 | 
| 38 | 4 | adantr 276 | 
. . . . . . 7
 | 
| 39 | 35, 36, 37, 38, 29 | syl22anc 1250 | 
. . . . . 6
 | 
| 40 | 34, 39 | mpbid 147 | 
. . . . 5
 | 
| 41 | 33, 40 | eqeltrd 2273 | 
. . . 4
 | 
| 42 | 33 | oveq1d 5937 | 
. . . . 5
 | 
| 43 | zcn 9331 | 
. . . . . . 7
 | |
| 44 | pncan 8232 | 
. . . . . . 7
 | |
| 45 | 43, 16, 44 | syl2an 289 | 
. . . . . 6
 | 
| 46 | 37, 38, 45 | syl2anc 411 | 
. . . . 5
 | 
| 47 | 42, 46 | eqtr2d 2230 | 
. . . 4
 | 
| 48 | 41, 47 | jca 306 | 
. . 3
 | 
| 49 | 32, 48 | impbida 596 | 
. 2
 | 
| 50 | 1, 6, 10, 49 | f1od 6126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 | 
| This theorem is referenced by: fsumshft 11609 fprodshft 11783 | 
| Copyright terms: Public domain | W3C validator |