| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptfzshft | Unicode version | ||
| Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
| Ref | Expression |
|---|---|
| mptfzshft.1 |
|
| mptfzshft.2 |
|
| mptfzshft.3 |
|
| Ref | Expression |
|---|---|
| mptfzshft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. 2
| |
| 2 | elfzelz 10129 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | mptfzshft.1 |
. . . 4
| |
| 5 | 4 | adantr 276 |
. . 3
|
| 6 | 3, 5 | zsubcld 9482 |
. 2
|
| 7 | elfzelz 10129 |
. . . 4
| |
| 8 | 7 | adantl 277 |
. . 3
|
| 9 | 4 | adantr 276 |
. . 3
|
| 10 | 8, 9 | zaddcld 9481 |
. 2
|
| 11 | simprr 531 |
. . . . . . . 8
| |
| 12 | 11 | oveq1d 5949 |
. . . . . . 7
|
| 13 | 2 | ad2antrl 490 |
. . . . . . . 8
|
| 14 | 4 | adantr 276 |
. . . . . . . 8
|
| 15 | zcn 9359 |
. . . . . . . . 9
| |
| 16 | zcn 9359 |
. . . . . . . . 9
| |
| 17 | npcan 8263 |
. . . . . . . . 9
| |
| 18 | 15, 16, 17 | syl2an 289 |
. . . . . . . 8
|
| 19 | 13, 14, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 12, 19 | eqtr2d 2238 |
. . . . . 6
|
| 21 | simprl 529 |
. . . . . 6
| |
| 22 | 20, 21 | eqeltrrd 2282 |
. . . . 5
|
| 23 | mptfzshft.2 |
. . . . . . 7
| |
| 24 | 23 | adantr 276 |
. . . . . 6
|
| 25 | mptfzshft.3 |
. . . . . . 7
| |
| 26 | 25 | adantr 276 |
. . . . . 6
|
| 27 | 13, 14 | zsubcld 9482 |
. . . . . . 7
|
| 28 | 11, 27 | eqeltrd 2281 |
. . . . . 6
|
| 29 | fzaddel 10163 |
. . . . . 6
| |
| 30 | 24, 26, 28, 14, 29 | syl22anc 1250 |
. . . . 5
|
| 31 | 22, 30 | mpbird 167 |
. . . 4
|
| 32 | 31, 20 | jca 306 |
. . 3
|
| 33 | simprr 531 |
. . . . 5
| |
| 34 | simprl 529 |
. . . . . 6
| |
| 35 | 23 | adantr 276 |
. . . . . . 7
|
| 36 | 25 | adantr 276 |
. . . . . . 7
|
| 37 | 7 | ad2antrl 490 |
. . . . . . 7
|
| 38 | 4 | adantr 276 |
. . . . . . 7
|
| 39 | 35, 36, 37, 38, 29 | syl22anc 1250 |
. . . . . 6
|
| 40 | 34, 39 | mpbid 147 |
. . . . 5
|
| 41 | 33, 40 | eqeltrd 2281 |
. . . 4
|
| 42 | 33 | oveq1d 5949 |
. . . . 5
|
| 43 | zcn 9359 |
. . . . . . 7
| |
| 44 | pncan 8260 |
. . . . . . 7
| |
| 45 | 43, 16, 44 | syl2an 289 |
. . . . . 6
|
| 46 | 37, 38, 45 | syl2anc 411 |
. . . . 5
|
| 47 | 42, 46 | eqtr2d 2238 |
. . . 4
|
| 48 | 41, 47 | jca 306 |
. . 3
|
| 49 | 32, 48 | impbida 596 |
. 2
|
| 50 | 1, 6, 10, 49 | f1od 6139 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-fz 10113 |
| This theorem is referenced by: fsumshft 11674 fprodshft 11848 |
| Copyright terms: Public domain | W3C validator |