Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptfzshft | Unicode version |
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
mptfzshft.1 | |
mptfzshft.2 | |
mptfzshft.3 |
Ref | Expression |
---|---|
mptfzshft |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 | |
2 | elfzelz 9960 | . . . 4 | |
3 | 2 | adantl 275 | . . 3 |
4 | mptfzshft.1 | . . . 4 | |
5 | 4 | adantr 274 | . . 3 |
6 | 3, 5 | zsubcld 9318 | . 2 |
7 | elfzelz 9960 | . . . 4 | |
8 | 7 | adantl 275 | . . 3 |
9 | 4 | adantr 274 | . . 3 |
10 | 8, 9 | zaddcld 9317 | . 2 |
11 | simprr 522 | . . . . . . . 8 | |
12 | 11 | oveq1d 5857 | . . . . . . 7 |
13 | 2 | ad2antrl 482 | . . . . . . . 8 |
14 | 4 | adantr 274 | . . . . . . . 8 |
15 | zcn 9196 | . . . . . . . . 9 | |
16 | zcn 9196 | . . . . . . . . 9 | |
17 | npcan 8107 | . . . . . . . . 9 | |
18 | 15, 16, 17 | syl2an 287 | . . . . . . . 8 |
19 | 13, 14, 18 | syl2anc 409 | . . . . . . 7 |
20 | 12, 19 | eqtr2d 2199 | . . . . . 6 |
21 | simprl 521 | . . . . . 6 | |
22 | 20, 21 | eqeltrrd 2244 | . . . . 5 |
23 | mptfzshft.2 | . . . . . . 7 | |
24 | 23 | adantr 274 | . . . . . 6 |
25 | mptfzshft.3 | . . . . . . 7 | |
26 | 25 | adantr 274 | . . . . . 6 |
27 | 13, 14 | zsubcld 9318 | . . . . . . 7 |
28 | 11, 27 | eqeltrd 2243 | . . . . . 6 |
29 | fzaddel 9994 | . . . . . 6 | |
30 | 24, 26, 28, 14, 29 | syl22anc 1229 | . . . . 5 |
31 | 22, 30 | mpbird 166 | . . . 4 |
32 | 31, 20 | jca 304 | . . 3 |
33 | simprr 522 | . . . . 5 | |
34 | simprl 521 | . . . . . 6 | |
35 | 23 | adantr 274 | . . . . . . 7 |
36 | 25 | adantr 274 | . . . . . . 7 |
37 | 7 | ad2antrl 482 | . . . . . . 7 |
38 | 4 | adantr 274 | . . . . . . 7 |
39 | 35, 36, 37, 38, 29 | syl22anc 1229 | . . . . . 6 |
40 | 34, 39 | mpbid 146 | . . . . 5 |
41 | 33, 40 | eqeltrd 2243 | . . . 4 |
42 | 33 | oveq1d 5857 | . . . . 5 |
43 | zcn 9196 | . . . . . . 7 | |
44 | pncan 8104 | . . . . . . 7 | |
45 | 43, 16, 44 | syl2an 287 | . . . . . 6 |
46 | 37, 38, 45 | syl2anc 409 | . . . . 5 |
47 | 42, 46 | eqtr2d 2199 | . . . 4 |
48 | 41, 47 | jca 304 | . . 3 |
49 | 32, 48 | impbida 586 | . 2 |
50 | 1, 6, 10, 49 | f1od 6041 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cmpt 4043 wf1o 5187 (class class class)co 5842 cc 7751 caddc 7756 cmin 8069 cz 9191 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: fsumshft 11385 fprodshft 11559 |
Copyright terms: Public domain | W3C validator |