| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptfzshft | Unicode version | ||
| Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
| Ref | Expression |
|---|---|
| mptfzshft.1 |
|
| mptfzshft.2 |
|
| mptfzshft.3 |
|
| Ref | Expression |
|---|---|
| mptfzshft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 |
. 2
| |
| 2 | elfzelz 10167 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | mptfzshft.1 |
. . . 4
| |
| 5 | 4 | adantr 276 |
. . 3
|
| 6 | 3, 5 | zsubcld 9520 |
. 2
|
| 7 | elfzelz 10167 |
. . . 4
| |
| 8 | 7 | adantl 277 |
. . 3
|
| 9 | 4 | adantr 276 |
. . 3
|
| 10 | 8, 9 | zaddcld 9519 |
. 2
|
| 11 | simprr 531 |
. . . . . . . 8
| |
| 12 | 11 | oveq1d 5972 |
. . . . . . 7
|
| 13 | 2 | ad2antrl 490 |
. . . . . . . 8
|
| 14 | 4 | adantr 276 |
. . . . . . . 8
|
| 15 | zcn 9397 |
. . . . . . . . 9
| |
| 16 | zcn 9397 |
. . . . . . . . 9
| |
| 17 | npcan 8301 |
. . . . . . . . 9
| |
| 18 | 15, 16, 17 | syl2an 289 |
. . . . . . . 8
|
| 19 | 13, 14, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 12, 19 | eqtr2d 2240 |
. . . . . 6
|
| 21 | simprl 529 |
. . . . . 6
| |
| 22 | 20, 21 | eqeltrrd 2284 |
. . . . 5
|
| 23 | mptfzshft.2 |
. . . . . . 7
| |
| 24 | 23 | adantr 276 |
. . . . . 6
|
| 25 | mptfzshft.3 |
. . . . . . 7
| |
| 26 | 25 | adantr 276 |
. . . . . 6
|
| 27 | 13, 14 | zsubcld 9520 |
. . . . . . 7
|
| 28 | 11, 27 | eqeltrd 2283 |
. . . . . 6
|
| 29 | fzaddel 10201 |
. . . . . 6
| |
| 30 | 24, 26, 28, 14, 29 | syl22anc 1251 |
. . . . 5
|
| 31 | 22, 30 | mpbird 167 |
. . . 4
|
| 32 | 31, 20 | jca 306 |
. . 3
|
| 33 | simprr 531 |
. . . . 5
| |
| 34 | simprl 529 |
. . . . . 6
| |
| 35 | 23 | adantr 276 |
. . . . . . 7
|
| 36 | 25 | adantr 276 |
. . . . . . 7
|
| 37 | 7 | ad2antrl 490 |
. . . . . . 7
|
| 38 | 4 | adantr 276 |
. . . . . . 7
|
| 39 | 35, 36, 37, 38, 29 | syl22anc 1251 |
. . . . . 6
|
| 40 | 34, 39 | mpbid 147 |
. . . . 5
|
| 41 | 33, 40 | eqeltrd 2283 |
. . . 4
|
| 42 | 33 | oveq1d 5972 |
. . . . 5
|
| 43 | zcn 9397 |
. . . . . . 7
| |
| 44 | pncan 8298 |
. . . . . . 7
| |
| 45 | 43, 16, 44 | syl2an 289 |
. . . . . 6
|
| 46 | 37, 38, 45 | syl2anc 411 |
. . . . 5
|
| 47 | 42, 46 | eqtr2d 2240 |
. . . 4
|
| 48 | 41, 47 | jca 306 |
. . 3
|
| 49 | 32, 48 | impbida 596 |
. 2
|
| 50 | 1, 6, 10, 49 | f1od 6162 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 |
| This theorem is referenced by: fsumshft 11830 fprodshft 12004 |
| Copyright terms: Public domain | W3C validator |