ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfzshft Unicode version

Theorem mptfzshft 11828
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
mptfzshft.1  |-  ( ph  ->  K  e.  ZZ )
mptfzshft.2  |-  ( ph  ->  M  e.  ZZ )
mptfzshft.3  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
mptfzshft  |-  ( ph  ->  ( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N ) )
Distinct variable groups:    j, K    j, M    j, N    ph, j

Proof of Theorem mptfzshft
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . 2  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  =  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )
2 elfzelz 10167 . . . 4  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  j  e.  ZZ )
32adantl 277 . . 3  |-  ( (
ph  /\  j  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  j  e.  ZZ )
4 mptfzshft.1 . . . 4  |-  ( ph  ->  K  e.  ZZ )
54adantr 276 . . 3  |-  ( (
ph  /\  j  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  K  e.  ZZ )
63, 5zsubcld 9520 . 2  |-  ( (
ph  /\  j  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  (
j  -  K )  e.  ZZ )
7 elfzelz 10167 . . . 4  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
87adantl 277 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  k  e.  ZZ )
94adantr 276 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  K  e.  ZZ )
108, 9zaddcld 9519 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( k  +  K )  e.  ZZ )
11 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  =  ( j  -  K ) )
1211oveq1d 5972 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  +  K
)  =  ( ( j  -  K )  +  K ) )
132ad2antrl 490 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  e.  ZZ )
144adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  K  e.  ZZ )
15 zcn 9397 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  j  e.  CC )
16 zcn 9397 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  CC )
17 npcan 8301 . . . . . . . . 9  |-  ( ( j  e.  CC  /\  K  e.  CC )  ->  ( ( j  -  K )  +  K
)  =  j )
1815, 16, 17syl2an 289 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( j  -  K )  +  K
)  =  j )
1913, 14, 18syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( ( j  -  K )  +  K
)  =  j )
2012, 19eqtr2d 2240 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  =  ( k  +  K ) )
21 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
2220, 21eqeltrrd 2284 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
23 mptfzshft.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
2423adantr 276 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  M  e.  ZZ )
25 mptfzshft.3 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  N  e.  ZZ )
2713, 14zsubcld 9520 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( j  -  K
)  e.  ZZ )
2811, 27eqeltrd 2283 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  e.  ZZ )
29 fzaddel 10201 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3024, 26, 28, 14, 29syl22anc 1251 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3122, 30mpbird 167 . . . 4  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  e.  ( M ... N ) )
3231, 20jca 306 . . 3  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  e.  ( M ... N )  /\  j  =  ( k  +  K ) ) )
33 simprr 531 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
j  =  ( k  +  K ) )
34 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  e.  ( M ... N ) )
3523adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  M  e.  ZZ )
3625adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  N  e.  ZZ )
377ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  e.  ZZ )
384adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  K  e.  ZZ )
3935, 36, 37, 38, 29syl22anc 1251 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
4034, 39mpbid 147 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
4133, 40eqeltrd 2283 . . . 4  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
j  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
4233oveq1d 5972 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( j  -  K
)  =  ( ( k  +  K )  -  K ) )
43 zcn 9397 . . . . . . 7  |-  ( k  e.  ZZ  ->  k  e.  CC )
44 pncan 8298 . . . . . . 7  |-  ( ( k  e.  CC  /\  K  e.  CC )  ->  ( ( k  +  K )  -  K
)  =  k )
4543, 16, 44syl2an 289 . . . . . 6  |-  ( ( k  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  +  K )  -  K
)  =  k )
4637, 38, 45syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( ( k  +  K )  -  K
)  =  k )
4742, 46eqtr2d 2240 . . . 4  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  =  ( j  -  K ) )
4841, 47jca 306 . . 3  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) )
4932, 48impbida 596 . 2  |-  ( ph  ->  ( ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) )  <->  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) ) )
501, 6, 10, 49f1od 6162 1  |-  ( ph  ->  ( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    |-> cmpt 4113   -1-1-onto->wf1o 5279  (class class class)co 5957   CCcc 7943    + caddc 7948    - cmin 8263   ZZcz 9392   ...cfz 10150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151
This theorem is referenced by:  fsumshft  11830  fprodshft  12004
  Copyright terms: Public domain W3C validator