ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfzshft Unicode version

Theorem mptfzshft 11369
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
mptfzshft.1  |-  ( ph  ->  K  e.  ZZ )
mptfzshft.2  |-  ( ph  ->  M  e.  ZZ )
mptfzshft.3  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
mptfzshft  |-  ( ph  ->  ( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N ) )
Distinct variable groups:    j, K    j, M    j, N    ph, j

Proof of Theorem mptfzshft
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eqid 2164 . 2  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  |->  ( j  -  K ) )  =  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  |->  ( j  -  K ) )
2 elfzelz 9951 . . . 4  |-  ( j  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  j  e.  ZZ )
32adantl 275 . . 3  |-  ( (
ph  /\  j  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  j  e.  ZZ )
4 mptfzshft.1 . . . 4  |-  ( ph  ->  K  e.  ZZ )
54adantr 274 . . 3  |-  ( (
ph  /\  j  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  K  e.  ZZ )
63, 5zsubcld 9309 . 2  |-  ( (
ph  /\  j  e.  ( ( M  +  K ) ... ( N  +  K )
) )  ->  (
j  -  K )  e.  ZZ )
7 elfzelz 9951 . . . 4  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
87adantl 275 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  k  e.  ZZ )
94adantr 274 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  K  e.  ZZ )
108, 9zaddcld 9308 . 2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( k  +  K )  e.  ZZ )
11 simprr 522 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  =  ( j  -  K ) )
1211oveq1d 5851 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  +  K
)  =  ( ( j  -  K )  +  K ) )
132ad2antrl 482 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  e.  ZZ )
144adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  K  e.  ZZ )
15 zcn 9187 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  j  e.  CC )
16 zcn 9187 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  CC )
17 npcan 8098 . . . . . . . . 9  |-  ( ( j  e.  CC  /\  K  e.  CC )  ->  ( ( j  -  K )  +  K
)  =  j )
1815, 16, 17syl2an 287 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( j  -  K )  +  K
)  =  j )
1913, 14, 18syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( ( j  -  K )  +  K
)  =  j )
2012, 19eqtr2d 2198 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  =  ( k  +  K ) )
21 simprl 521 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
j  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
2220, 21eqeltrrd 2242 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
23 mptfzshft.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
2423adantr 274 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  M  e.  ZZ )
25 mptfzshft.3 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2625adantr 274 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  ->  N  e.  ZZ )
2713, 14zsubcld 9309 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( j  -  K
)  e.  ZZ )
2811, 27eqeltrd 2241 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  e.  ZZ )
29 fzaddel 9984 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3024, 26, 28, 14, 29syl22anc 1228 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
3122, 30mpbird 166 . . . 4  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
k  e.  ( M ... N ) )
3231, 20jca 304 . . 3  |-  ( (
ph  /\  ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) ) )  -> 
( k  e.  ( M ... N )  /\  j  =  ( k  +  K ) ) )
33 simprr 522 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
j  =  ( k  +  K ) )
34 simprl 521 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  e.  ( M ... N ) )
3523adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  M  e.  ZZ )
3625adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  N  e.  ZZ )
377ad2antrl 482 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  e.  ZZ )
384adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  ->  K  e.  ZZ )
3935, 36, 37, 38, 29syl22anc 1228 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
4034, 39mpbid 146 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
4133, 40eqeltrd 2241 . . . 4  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
j  e.  ( ( M  +  K ) ... ( N  +  K ) ) )
4233oveq1d 5851 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( j  -  K
)  =  ( ( k  +  K )  -  K ) )
43 zcn 9187 . . . . . . 7  |-  ( k  e.  ZZ  ->  k  e.  CC )
44 pncan 8095 . . . . . . 7  |-  ( ( k  e.  CC  /\  K  e.  CC )  ->  ( ( k  +  K )  -  K
)  =  k )
4543, 16, 44syl2an 287 . . . . . 6  |-  ( ( k  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  +  K )  -  K
)  =  k )
4637, 38, 45syl2anc 409 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( ( k  +  K )  -  K
)  =  k )
4742, 46eqtr2d 2198 . . . 4  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
k  =  ( j  -  K ) )
4841, 47jca 304 . . 3  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) )  -> 
( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  /\  k  =  ( j  -  K ) ) )
4932, 48impbida 586 . 2  |-  ( ph  ->  ( ( j  e.  ( ( M  +  K ) ... ( N  +  K )
)  /\  k  =  ( j  -  K
) )  <->  ( k  e.  ( M ... N
)  /\  j  =  ( k  +  K
) ) ) )
501, 6, 10, 49f1od 6035 1  |-  ( ph  ->  ( j  e.  ( ( M  +  K
) ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K ) ... ( N  +  K ) ) -1-1-onto-> ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135    |-> cmpt 4037   -1-1-onto->wf1o 5181  (class class class)co 5836   CCcc 7742    + caddc 7747    - cmin 8060   ZZcz 9182   ...cfz 9935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-fz 9936
This theorem is referenced by:  fsumshft  11371  fprodshft  11545
  Copyright terms: Public domain W3C validator