Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptfzshft | Unicode version |
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
mptfzshft.1 | |
mptfzshft.2 | |
mptfzshft.3 |
Ref | Expression |
---|---|
mptfzshft |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 | |
2 | elfzelz 9981 | . . . 4 | |
3 | 2 | adantl 275 | . . 3 |
4 | mptfzshft.1 | . . . 4 | |
5 | 4 | adantr 274 | . . 3 |
6 | 3, 5 | zsubcld 9339 | . 2 |
7 | elfzelz 9981 | . . . 4 | |
8 | 7 | adantl 275 | . . 3 |
9 | 4 | adantr 274 | . . 3 |
10 | 8, 9 | zaddcld 9338 | . 2 |
11 | simprr 527 | . . . . . . . 8 | |
12 | 11 | oveq1d 5868 | . . . . . . 7 |
13 | 2 | ad2antrl 487 | . . . . . . . 8 |
14 | 4 | adantr 274 | . . . . . . . 8 |
15 | zcn 9217 | . . . . . . . . 9 | |
16 | zcn 9217 | . . . . . . . . 9 | |
17 | npcan 8128 | . . . . . . . . 9 | |
18 | 15, 16, 17 | syl2an 287 | . . . . . . . 8 |
19 | 13, 14, 18 | syl2anc 409 | . . . . . . 7 |
20 | 12, 19 | eqtr2d 2204 | . . . . . 6 |
21 | simprl 526 | . . . . . 6 | |
22 | 20, 21 | eqeltrrd 2248 | . . . . 5 |
23 | mptfzshft.2 | . . . . . . 7 | |
24 | 23 | adantr 274 | . . . . . 6 |
25 | mptfzshft.3 | . . . . . . 7 | |
26 | 25 | adantr 274 | . . . . . 6 |
27 | 13, 14 | zsubcld 9339 | . . . . . . 7 |
28 | 11, 27 | eqeltrd 2247 | . . . . . 6 |
29 | fzaddel 10015 | . . . . . 6 | |
30 | 24, 26, 28, 14, 29 | syl22anc 1234 | . . . . 5 |
31 | 22, 30 | mpbird 166 | . . . 4 |
32 | 31, 20 | jca 304 | . . 3 |
33 | simprr 527 | . . . . 5 | |
34 | simprl 526 | . . . . . 6 | |
35 | 23 | adantr 274 | . . . . . . 7 |
36 | 25 | adantr 274 | . . . . . . 7 |
37 | 7 | ad2antrl 487 | . . . . . . 7 |
38 | 4 | adantr 274 | . . . . . . 7 |
39 | 35, 36, 37, 38, 29 | syl22anc 1234 | . . . . . 6 |
40 | 34, 39 | mpbid 146 | . . . . 5 |
41 | 33, 40 | eqeltrd 2247 | . . . 4 |
42 | 33 | oveq1d 5868 | . . . . 5 |
43 | zcn 9217 | . . . . . . 7 | |
44 | pncan 8125 | . . . . . . 7 | |
45 | 43, 16, 44 | syl2an 287 | . . . . . 6 |
46 | 37, 38, 45 | syl2anc 409 | . . . . 5 |
47 | 42, 46 | eqtr2d 2204 | . . . 4 |
48 | 41, 47 | jca 304 | . . 3 |
49 | 32, 48 | impbida 591 | . 2 |
50 | 1, 6, 10, 49 | f1od 6052 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cmpt 4050 wf1o 5197 (class class class)co 5853 cc 7772 caddc 7777 cmin 8090 cz 9212 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: fsumshft 11407 fprodshft 11581 |
Copyright terms: Public domain | W3C validator |