Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptfzshft | Unicode version |
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
mptfzshft.1 | |
mptfzshft.2 | |
mptfzshft.3 |
Ref | Expression |
---|---|
mptfzshft |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2175 | . 2 | |
2 | elfzelz 9993 | . . . 4 | |
3 | 2 | adantl 277 | . . 3 |
4 | mptfzshft.1 | . . . 4 | |
5 | 4 | adantr 276 | . . 3 |
6 | 3, 5 | zsubcld 9351 | . 2 |
7 | elfzelz 9993 | . . . 4 | |
8 | 7 | adantl 277 | . . 3 |
9 | 4 | adantr 276 | . . 3 |
10 | 8, 9 | zaddcld 9350 | . 2 |
11 | simprr 531 | . . . . . . . 8 | |
12 | 11 | oveq1d 5880 | . . . . . . 7 |
13 | 2 | ad2antrl 490 | . . . . . . . 8 |
14 | 4 | adantr 276 | . . . . . . . 8 |
15 | zcn 9229 | . . . . . . . . 9 | |
16 | zcn 9229 | . . . . . . . . 9 | |
17 | npcan 8140 | . . . . . . . . 9 | |
18 | 15, 16, 17 | syl2an 289 | . . . . . . . 8 |
19 | 13, 14, 18 | syl2anc 411 | . . . . . . 7 |
20 | 12, 19 | eqtr2d 2209 | . . . . . 6 |
21 | simprl 529 | . . . . . 6 | |
22 | 20, 21 | eqeltrrd 2253 | . . . . 5 |
23 | mptfzshft.2 | . . . . . . 7 | |
24 | 23 | adantr 276 | . . . . . 6 |
25 | mptfzshft.3 | . . . . . . 7 | |
26 | 25 | adantr 276 | . . . . . 6 |
27 | 13, 14 | zsubcld 9351 | . . . . . . 7 |
28 | 11, 27 | eqeltrd 2252 | . . . . . 6 |
29 | fzaddel 10027 | . . . . . 6 | |
30 | 24, 26, 28, 14, 29 | syl22anc 1239 | . . . . 5 |
31 | 22, 30 | mpbird 167 | . . . 4 |
32 | 31, 20 | jca 306 | . . 3 |
33 | simprr 531 | . . . . 5 | |
34 | simprl 529 | . . . . . 6 | |
35 | 23 | adantr 276 | . . . . . . 7 |
36 | 25 | adantr 276 | . . . . . . 7 |
37 | 7 | ad2antrl 490 | . . . . . . 7 |
38 | 4 | adantr 276 | . . . . . . 7 |
39 | 35, 36, 37, 38, 29 | syl22anc 1239 | . . . . . 6 |
40 | 34, 39 | mpbid 147 | . . . . 5 |
41 | 33, 40 | eqeltrd 2252 | . . . 4 |
42 | 33 | oveq1d 5880 | . . . . 5 |
43 | zcn 9229 | . . . . . . 7 | |
44 | pncan 8137 | . . . . . . 7 | |
45 | 43, 16, 44 | syl2an 289 | . . . . . 6 |
46 | 37, 38, 45 | syl2anc 411 | . . . . 5 |
47 | 42, 46 | eqtr2d 2209 | . . . 4 |
48 | 41, 47 | jca 306 | . . 3 |
49 | 32, 48 | impbida 596 | . 2 |
50 | 1, 6, 10, 49 | f1od 6064 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 cmpt 4059 wf1o 5207 (class class class)co 5865 cc 7784 caddc 7789 cmin 8102 cz 9224 cfz 9977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-n0 9148 df-z 9225 df-uz 9500 df-fz 9978 |
This theorem is referenced by: fsumshft 11418 fprodshft 11592 |
Copyright terms: Public domain | W3C validator |