ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfzshft GIF version

Theorem mptfzshft 11919
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
mptfzshft.1 (𝜑𝐾 ∈ ℤ)
mptfzshft.2 (𝜑𝑀 ∈ ℤ)
mptfzshft.3 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
mptfzshft (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
Distinct variable groups:   𝑗,𝐾   𝑗,𝑀   𝑗,𝑁   𝜑,𝑗

Proof of Theorem mptfzshft
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2209 . 2 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)) = (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾))
2 elfzelz 10189 . . . 4 (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑗 ∈ ℤ)
32adantl 277 . . 3 ((𝜑𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑗 ∈ ℤ)
4 mptfzshft.1 . . . 4 (𝜑𝐾 ∈ ℤ)
54adantr 276 . . 3 ((𝜑𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ)
63, 5zsubcld 9542 . 2 ((𝜑𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑗𝐾) ∈ ℤ)
7 elfzelz 10189 . . . 4 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
87adantl 277 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
94adantr 276 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
108, 9zaddcld 9541 . 2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝑘 + 𝐾) ∈ ℤ)
11 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 = (𝑗𝐾))
1211oveq1d 5989 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 + 𝐾) = ((𝑗𝐾) + 𝐾))
132ad2antrl 490 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 ∈ ℤ)
144adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝐾 ∈ ℤ)
15 zcn 9419 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
16 zcn 9419 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
17 npcan 8323 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑗𝐾) + 𝐾) = 𝑗)
1815, 16, 17syl2an 289 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑗𝐾) + 𝐾) = 𝑗)
1913, 14, 18syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → ((𝑗𝐾) + 𝐾) = 𝑗)
2012, 19eqtr2d 2243 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 = (𝑘 + 𝐾))
21 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2220, 21eqeltrrd 2287 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
23 mptfzshft.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2423adantr 276 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑀 ∈ ℤ)
25 mptfzshft.3 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2625adantr 276 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑁 ∈ ℤ)
2713, 14zsubcld 9542 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑗𝐾) ∈ ℤ)
2811, 27eqeltrd 2286 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 ∈ ℤ)
29 fzaddel 10223 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3024, 26, 28, 14, 29syl22anc 1253 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3122, 30mpbird 167 . . . 4 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → 𝑘 ∈ (𝑀...𝑁))
3231, 20jca 306 . . 3 ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾)))
33 simprr 531 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 = (𝑘 + 𝐾))
34 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ (𝑀...𝑁))
3523adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑀 ∈ ℤ)
3625adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑁 ∈ ℤ)
377ad2antrl 490 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ ℤ)
384adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝐾 ∈ ℤ)
3935, 36, 37, 38, 29syl22anc 1253 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
4034, 39mpbid 147 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4133, 40eqeltrd 2286 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4233oveq1d 5989 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗𝐾) = ((𝑘 + 𝐾) − 𝐾))
43 zcn 9419 . . . . . . 7 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
44 pncan 8320 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4543, 16, 44syl2an 289 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4637, 38, 45syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → ((𝑘 + 𝐾) − 𝐾) = 𝑘)
4742, 46eqtr2d 2243 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 = (𝑗𝐾))
4841, 47jca 306 . . 3 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾)))
4932, 48impbida 598 . 2 (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗𝐾)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))))
501, 6, 10, 49f1od 6179 1 (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  cmpt 4124  1-1-ontowf1o 5293  (class class class)co 5974  cc 7965   + caddc 7970  cmin 8285  cz 9414  ...cfz 10172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173
This theorem is referenced by:  fsumshft  11921  fprodshft  12095
  Copyright terms: Public domain W3C validator