| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. 2
⊢ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) = (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)) |
| 2 | | elfzelz 10117 |
. . . 4
⊢ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑗 ∈ ℤ) |
| 3 | 2 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑗 ∈ ℤ) |
| 4 | | mptfzshft.1 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 5 | 4 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ) |
| 6 | 3, 5 | zsubcld 9470 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑗 − 𝐾) ∈ ℤ) |
| 7 | | elfzelz 10117 |
. . . 4
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ) |
| 8 | 7 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ) |
| 9 | 4 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) |
| 10 | 8, 9 | zaddcld 9469 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝑘 + 𝐾) ∈ ℤ) |
| 11 | | simprr 531 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑘 = (𝑗 − 𝐾)) |
| 12 | 11 | oveq1d 5940 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → (𝑘 + 𝐾) = ((𝑗 − 𝐾) + 𝐾)) |
| 13 | 2 | ad2antrl 490 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑗 ∈ ℤ) |
| 14 | 4 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝐾 ∈ ℤ) |
| 15 | | zcn 9348 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℂ) |
| 16 | | zcn 9348 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
| 17 | | npcan 8252 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑗 − 𝐾) + 𝐾) = 𝑗) |
| 18 | 15, 16, 17 | syl2an 289 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑗 − 𝐾) + 𝐾) = 𝑗) |
| 19 | 13, 14, 18 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → ((𝑗 − 𝐾) + 𝐾) = 𝑗) |
| 20 | 12, 19 | eqtr2d 2230 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑗 = (𝑘 + 𝐾)) |
| 21 | | simprl 529 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
| 22 | 20, 21 | eqeltrrd 2274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
| 23 | | mptfzshft.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 24 | 23 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑀 ∈ ℤ) |
| 25 | | mptfzshft.3 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 26 | 25 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑁 ∈ ℤ) |
| 27 | 13, 14 | zsubcld 9470 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → (𝑗 − 𝐾) ∈ ℤ) |
| 28 | 11, 27 | eqeltrd 2273 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑘 ∈ ℤ) |
| 29 | | fzaddel 10151 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
| 30 | 24, 26, 28, 14, 29 | syl22anc 1250 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
| 31 | 22, 30 | mpbird 167 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → 𝑘 ∈ (𝑀...𝑁)) |
| 32 | 31, 20 | jca 306 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) |
| 33 | | simprr 531 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 = (𝑘 + 𝐾)) |
| 34 | | simprl 529 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ (𝑀...𝑁)) |
| 35 | 23 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑀 ∈ ℤ) |
| 36 | 25 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑁 ∈ ℤ) |
| 37 | 7 | ad2antrl 490 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 ∈ ℤ) |
| 38 | 4 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝐾 ∈ ℤ) |
| 39 | 35, 36, 37, 38, 29 | syl22anc 1250 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
| 40 | 34, 39 | mpbid 147 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
| 41 | 33, 40 | eqeltrd 2273 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
| 42 | 33 | oveq1d 5940 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗 − 𝐾) = ((𝑘 + 𝐾) − 𝐾)) |
| 43 | | zcn 9348 |
. . . . . . 7
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℂ) |
| 44 | | pncan 8249 |
. . . . . . 7
⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘) |
| 45 | 43, 16, 44 | syl2an 289 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) − 𝐾) = 𝑘) |
| 46 | 37, 38, 45 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → ((𝑘 + 𝐾) − 𝐾) = 𝑘) |
| 47 | 42, 46 | eqtr2d 2230 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → 𝑘 = (𝑗 − 𝐾)) |
| 48 | 41, 47 | jca 306 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾))) → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾))) |
| 49 | 32, 48 | impbida 596 |
. 2
⊢ (𝜑 → ((𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∧ 𝑘 = (𝑗 − 𝐾)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝑘 + 𝐾)))) |
| 50 | 1, 6, 10, 49 | f1od 6130 |
1
⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |