ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrev Unicode version

Theorem fsumrev 11625
Description: Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1  |-  ( ph  ->  K  e.  ZZ )
fsumrev.2  |-  ( ph  ->  M  e.  ZZ )
fsumrev.3  |-  ( ph  ->  N  e.  ZZ )
fsumrev.4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fsumrev.5  |-  ( j  =  ( K  -  k )  ->  A  =  B )
Assertion
Ref Expression
fsumrev  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( K  -  N ) ... ( K  -  M )
) B )
Distinct variable groups:    A, k    B, j    j, k, K    j, M, k    j, N, k    ph, j, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fsumrev
StepHypRef Expression
1 fsumrev.5 . 2  |-  ( j  =  ( K  -  k )  ->  A  =  B )
2 fsumrev.1 . . . 4  |-  ( ph  ->  K  e.  ZZ )
3 fsumrev.3 . . . 4  |-  ( ph  ->  N  e.  ZZ )
42, 3zsubcld 9470 . . 3  |-  ( ph  ->  ( K  -  N
)  e.  ZZ )
5 fsumrev.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
62, 5zsubcld 9470 . . 3  |-  ( ph  ->  ( K  -  M
)  e.  ZZ )
74, 6fzfigd 10540 . 2  |-  ( ph  ->  ( ( K  -  N ) ... ( K  -  M )
)  e.  Fin )
8 eqid 2196 . . 3  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  |->  ( K  -  j ) )  =  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  |->  ( K  -  j ) )
92adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  K  e.  ZZ )
10 elfzelz 10117 . . . . 5  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  j  e.  ZZ )
1110adantl 277 . . . 4  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  j  e.  ZZ )
129, 11zsubcld 9470 . . 3  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  j )  e.  ZZ )
132adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  K  e.  ZZ )
14 elfzelz 10117 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
1514adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  k  e.  ZZ )
1613, 15zsubcld 9470 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( K  -  k )  e.  ZZ )
17 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
k  =  ( K  -  j ) )
18 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
195adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  M  e.  ZZ )
203adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  N  e.  ZZ )
212adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  K  e.  ZZ )
2218, 10syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  ZZ )
23 fzrev 10176 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  j )  e.  ( M ... N
) ) )
2419, 20, 21, 22, 23syl22anc 1250 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  j )  e.  ( M ... N
) ) )
2518, 24mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  j
)  e.  ( M ... N ) )
2617, 25eqeltrd 2273 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
k  e.  ( M ... N ) )
2717oveq2d 5941 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  k
)  =  ( K  -  ( K  -  j ) ) )
28 zcn 9348 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
29 zcn 9348 . . . . . . . 8  |-  ( j  e.  ZZ  ->  j  e.  CC )
30 nncan 8272 . . . . . . . 8  |-  ( ( K  e.  CC  /\  j  e.  CC )  ->  ( K  -  ( K  -  j )
)  =  j )
3128, 29, 30syl2an 289 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ZZ )  ->  ( K  -  ( K  -  j )
)  =  j )
3221, 22, 31syl2anc 411 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  ( K  -  j )
)  =  j )
3327, 32eqtr2d 2230 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  =  ( K  -  k ) )
3426, 33jca 306 . . . 4  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( k  e.  ( M ... N )  /\  j  =  ( K  -  k ) ) )
35 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
j  =  ( K  -  k ) )
36 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  ( M ... N ) )
375adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  M  e.  ZZ )
383adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  N  e.  ZZ )
392adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  K  e.  ZZ )
4036, 14syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  ZZ )
41 fzrev2 10177 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( M ... N )  <-> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) ) )
4237, 38, 39, 40, 41syl22anc 1250 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) ) )
4336, 42mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
4435, 43eqeltrd 2273 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
j  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
4535oveq2d 5941 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  j
)  =  ( K  -  ( K  -  k ) ) )
46 zcn 9348 . . . . . . . 8  |-  ( k  e.  ZZ  ->  k  e.  CC )
47 nncan 8272 . . . . . . . 8  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  -  ( K  -  k )
)  =  k )
4828, 46, 47syl2an 289 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  k  e.  ZZ )  ->  ( K  -  ( K  -  k )
)  =  k )
4939, 40, 48syl2anc 411 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  ( K  -  k )
)  =  k )
5045, 49eqtr2d 2230 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  =  ( K  -  j ) )
5144, 50jca 306 . . . 4  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  /\  k  =  ( K  -  j ) ) )
5234, 51impbida 596 . . 3  |-  ( ph  ->  ( ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) )  <->  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) ) )
538, 12, 16, 52f1od 6130 . 2  |-  ( ph  ->  ( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) : ( ( K  -  N ) ... ( K  -  M ) ) -1-1-onto-> ( M ... N ) )
54 simpr 110 . . 3  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )
552adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  K  e.  ZZ )
56 elfzelz 10117 . . . . 5  |-  ( k  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  k  e.  ZZ )
5756adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ZZ )
5855, 57zsubcld 9470 . . 3  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  k )  e.  ZZ )
59 oveq2 5933 . . . 4  |-  ( j  =  k  ->  ( K  -  j )  =  ( K  -  k ) )
6059, 8fvmptg 5640 . . 3  |-  ( ( k  e.  ( ( K  -  N ) ... ( K  -  M ) )  /\  ( K  -  k
)  e.  ZZ )  ->  ( ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  |->  ( K  -  j ) ) `
 k )  =  ( K  -  k
) )
6154, 58, 60syl2anc 411 . 2  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  (
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) `  k )  =  ( K  -  k ) )
62 fsumrev.4 . 2  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
631, 7, 53, 61, 62fsumf1o 11572 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( K  -  N ) ... ( K  -  M )
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   CCcc 7894    - cmin 8214   ZZcz 9343   ...cfz 10100   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  fisumrev2  11628
  Copyright terms: Public domain W3C validator