ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrev Unicode version

Theorem fsumrev 11586
Description: Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1  |-  ( ph  ->  K  e.  ZZ )
fsumrev.2  |-  ( ph  ->  M  e.  ZZ )
fsumrev.3  |-  ( ph  ->  N  e.  ZZ )
fsumrev.4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fsumrev.5  |-  ( j  =  ( K  -  k )  ->  A  =  B )
Assertion
Ref Expression
fsumrev  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( K  -  N ) ... ( K  -  M )
) B )
Distinct variable groups:    A, k    B, j    j, k, K    j, M, k    j, N, k    ph, j, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fsumrev
StepHypRef Expression
1 fsumrev.5 . 2  |-  ( j  =  ( K  -  k )  ->  A  =  B )
2 fsumrev.1 . . . 4  |-  ( ph  ->  K  e.  ZZ )
3 fsumrev.3 . . . 4  |-  ( ph  ->  N  e.  ZZ )
42, 3zsubcld 9444 . . 3  |-  ( ph  ->  ( K  -  N
)  e.  ZZ )
5 fsumrev.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
62, 5zsubcld 9444 . . 3  |-  ( ph  ->  ( K  -  M
)  e.  ZZ )
74, 6fzfigd 10502 . 2  |-  ( ph  ->  ( ( K  -  N ) ... ( K  -  M )
)  e.  Fin )
8 eqid 2193 . . 3  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  |->  ( K  -  j ) )  =  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  |->  ( K  -  j ) )
92adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  K  e.  ZZ )
10 elfzelz 10091 . . . . 5  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  j  e.  ZZ )
1110adantl 277 . . . 4  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  j  e.  ZZ )
129, 11zsubcld 9444 . . 3  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  j )  e.  ZZ )
132adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  K  e.  ZZ )
14 elfzelz 10091 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
1514adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  k  e.  ZZ )
1613, 15zsubcld 9444 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( K  -  k )  e.  ZZ )
17 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
k  =  ( K  -  j ) )
18 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
195adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  M  e.  ZZ )
203adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  N  e.  ZZ )
212adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  K  e.  ZZ )
2218, 10syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  ZZ )
23 fzrev 10150 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  j )  e.  ( M ... N
) ) )
2419, 20, 21, 22, 23syl22anc 1250 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  j )  e.  ( M ... N
) ) )
2518, 24mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  j
)  e.  ( M ... N ) )
2617, 25eqeltrd 2270 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
k  e.  ( M ... N ) )
2717oveq2d 5934 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  k
)  =  ( K  -  ( K  -  j ) ) )
28 zcn 9322 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
29 zcn 9322 . . . . . . . 8  |-  ( j  e.  ZZ  ->  j  e.  CC )
30 nncan 8248 . . . . . . . 8  |-  ( ( K  e.  CC  /\  j  e.  CC )  ->  ( K  -  ( K  -  j )
)  =  j )
3128, 29, 30syl2an 289 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ZZ )  ->  ( K  -  ( K  -  j )
)  =  j )
3221, 22, 31syl2anc 411 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  ( K  -  j )
)  =  j )
3327, 32eqtr2d 2227 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  =  ( K  -  k ) )
3426, 33jca 306 . . . 4  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( k  e.  ( M ... N )  /\  j  =  ( K  -  k ) ) )
35 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
j  =  ( K  -  k ) )
36 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  ( M ... N ) )
375adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  M  e.  ZZ )
383adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  N  e.  ZZ )
392adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  K  e.  ZZ )
4036, 14syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  ZZ )
41 fzrev2 10151 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( M ... N )  <-> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) ) )
4237, 38, 39, 40, 41syl22anc 1250 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) ) )
4336, 42mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
4435, 43eqeltrd 2270 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
j  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
4535oveq2d 5934 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  j
)  =  ( K  -  ( K  -  k ) ) )
46 zcn 9322 . . . . . . . 8  |-  ( k  e.  ZZ  ->  k  e.  CC )
47 nncan 8248 . . . . . . . 8  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  -  ( K  -  k )
)  =  k )
4828, 46, 47syl2an 289 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  k  e.  ZZ )  ->  ( K  -  ( K  -  k )
)  =  k )
4939, 40, 48syl2anc 411 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  ( K  -  k )
)  =  k )
5045, 49eqtr2d 2227 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  =  ( K  -  j ) )
5144, 50jca 306 . . . 4  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  /\  k  =  ( K  -  j ) ) )
5234, 51impbida 596 . . 3  |-  ( ph  ->  ( ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) )  <->  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) ) )
538, 12, 16, 52f1od 6121 . 2  |-  ( ph  ->  ( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) : ( ( K  -  N ) ... ( K  -  M ) ) -1-1-onto-> ( M ... N ) )
54 simpr 110 . . 3  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )
552adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  K  e.  ZZ )
56 elfzelz 10091 . . . . 5  |-  ( k  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  k  e.  ZZ )
5756adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ZZ )
5855, 57zsubcld 9444 . . 3  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  k )  e.  ZZ )
59 oveq2 5926 . . . 4  |-  ( j  =  k  ->  ( K  -  j )  =  ( K  -  k ) )
6059, 8fvmptg 5633 . . 3  |-  ( ( k  e.  ( ( K  -  N ) ... ( K  -  M ) )  /\  ( K  -  k
)  e.  ZZ )  ->  ( ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  |->  ( K  -  j ) ) `
 k )  =  ( K  -  k
) )
6154, 58, 60syl2anc 411 . 2  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  (
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) `  k )  =  ( K  -  k ) )
62 fsumrev.4 . 2  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
631, 7, 53, 61, 62fsumf1o 11533 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( K  -  N ) ... ( K  -  M )
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   CCcc 7870    - cmin 8190   ZZcz 9317   ...cfz 10074   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  fisumrev2  11589
  Copyright terms: Public domain W3C validator