ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrev Unicode version

Theorem fsumrev 11954
Description: Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1  |-  ( ph  ->  K  e.  ZZ )
fsumrev.2  |-  ( ph  ->  M  e.  ZZ )
fsumrev.3  |-  ( ph  ->  N  e.  ZZ )
fsumrev.4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fsumrev.5  |-  ( j  =  ( K  -  k )  ->  A  =  B )
Assertion
Ref Expression
fsumrev  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( K  -  N ) ... ( K  -  M )
) B )
Distinct variable groups:    A, k    B, j    j, k, K    j, M, k    j, N, k    ph, j, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fsumrev
StepHypRef Expression
1 fsumrev.5 . 2  |-  ( j  =  ( K  -  k )  ->  A  =  B )
2 fsumrev.1 . . . 4  |-  ( ph  ->  K  e.  ZZ )
3 fsumrev.3 . . . 4  |-  ( ph  ->  N  e.  ZZ )
42, 3zsubcld 9574 . . 3  |-  ( ph  ->  ( K  -  N
)  e.  ZZ )
5 fsumrev.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
62, 5zsubcld 9574 . . 3  |-  ( ph  ->  ( K  -  M
)  e.  ZZ )
74, 6fzfigd 10653 . 2  |-  ( ph  ->  ( ( K  -  N ) ... ( K  -  M )
)  e.  Fin )
8 eqid 2229 . . 3  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  |->  ( K  -  j ) )  =  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  |->  ( K  -  j ) )
92adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  K  e.  ZZ )
10 elfzelz 10221 . . . . 5  |-  ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  j  e.  ZZ )
1110adantl 277 . . . 4  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  j  e.  ZZ )
129, 11zsubcld 9574 . . 3  |-  ( (
ph  /\  j  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  j )  e.  ZZ )
132adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  K  e.  ZZ )
14 elfzelz 10221 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
1514adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  k  e.  ZZ )
1613, 15zsubcld 9574 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( K  -  k )  e.  ZZ )
17 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
k  =  ( K  -  j ) )
18 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
195adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  M  e.  ZZ )
203adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  N  e.  ZZ )
212adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  ->  K  e.  ZZ )
2218, 10syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  e.  ZZ )
23 fzrev 10280 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  j )  e.  ( M ... N
) ) )
2419, 20, 21, 22, 23syl22anc 1272 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  j )  e.  ( M ... N
) ) )
2518, 24mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  j
)  e.  ( M ... N ) )
2617, 25eqeltrd 2306 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
k  e.  ( M ... N ) )
2717oveq2d 6017 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  k
)  =  ( K  -  ( K  -  j ) ) )
28 zcn 9451 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
29 zcn 9451 . . . . . . . 8  |-  ( j  e.  ZZ  ->  j  e.  CC )
30 nncan 8375 . . . . . . . 8  |-  ( ( K  e.  CC  /\  j  e.  CC )  ->  ( K  -  ( K  -  j )
)  =  j )
3128, 29, 30syl2an 289 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ZZ )  ->  ( K  -  ( K  -  j )
)  =  j )
3221, 22, 31syl2anc 411 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( K  -  ( K  -  j )
)  =  j )
3327, 32eqtr2d 2263 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
j  =  ( K  -  k ) )
3426, 33jca 306 . . . 4  |-  ( (
ph  /\  ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) ) )  -> 
( k  e.  ( M ... N )  /\  j  =  ( K  -  k ) ) )
35 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
j  =  ( K  -  k ) )
36 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  ( M ... N ) )
375adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  M  e.  ZZ )
383adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  N  e.  ZZ )
392adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  ->  K  e.  ZZ )
4036, 14syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  e.  ZZ )
41 fzrev2 10281 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( M ... N )  <-> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) ) )
4237, 38, 39, 40, 41syl22anc 1272 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( k  e.  ( M ... N )  <-> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) ) )
4336, 42mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  k
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
4435, 43eqeltrd 2306 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
j  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
4535oveq2d 6017 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  j
)  =  ( K  -  ( K  -  k ) ) )
46 zcn 9451 . . . . . . . 8  |-  ( k  e.  ZZ  ->  k  e.  CC )
47 nncan 8375 . . . . . . . 8  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  -  ( K  -  k )
)  =  k )
4828, 46, 47syl2an 289 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  k  e.  ZZ )  ->  ( K  -  ( K  -  k )
)  =  k )
4939, 40, 48syl2anc 411 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( K  -  ( K  -  k )
)  =  k )
5045, 49eqtr2d 2263 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
k  =  ( K  -  j ) )
5144, 50jca 306 . . . 4  |-  ( (
ph  /\  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) )  -> 
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  /\  k  =  ( K  -  j ) ) )
5234, 51impbida 598 . . 3  |-  ( ph  ->  ( ( j  e.  ( ( K  -  N ) ... ( K  -  M )
)  /\  k  =  ( K  -  j
) )  <->  ( k  e.  ( M ... N
)  /\  j  =  ( K  -  k
) ) ) )
538, 12, 16, 52f1od 6209 . 2  |-  ( ph  ->  ( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) : ( ( K  -  N ) ... ( K  -  M ) ) -1-1-onto-> ( M ... N ) )
54 simpr 110 . . 3  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )
552adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  K  e.  ZZ )
56 elfzelz 10221 . . . . 5  |-  ( k  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  k  e.  ZZ )
5756adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ZZ )
5855, 57zsubcld 9574 . . 3  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  k )  e.  ZZ )
59 oveq2 6009 . . . 4  |-  ( j  =  k  ->  ( K  -  j )  =  ( K  -  k ) )
6059, 8fvmptg 5710 . . 3  |-  ( ( k  e.  ( ( K  -  N ) ... ( K  -  M ) )  /\  ( K  -  k
)  e.  ZZ )  ->  ( ( j  e.  ( ( K  -  N ) ... ( K  -  M
) )  |->  ( K  -  j ) ) `
 k )  =  ( K  -  k
) )
6154, 58, 60syl2anc 411 . 2  |-  ( (
ph  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  (
( j  e.  ( ( K  -  N
) ... ( K  -  M ) )  |->  ( K  -  j ) ) `  k )  =  ( K  -  k ) )
62 fsumrev.4 . 2  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
631, 7, 53, 61, 62fsumf1o 11901 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( K  -  N ) ... ( K  -  M )
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    |-> cmpt 4145   ` cfv 5318  (class class class)co 6001   CCcc 7997    - cmin 8317   ZZcz 9446   ...cfz 10204   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by:  fisumrev2  11957
  Copyright terms: Public domain W3C validator