| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zaddcld | Unicode version | ||
| Description: Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| zred.1 |
|
| zaddcld.1 |
|
| Ref | Expression |
|---|---|
| zaddcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zred.1 |
. 2
| |
| 2 | zaddcld.1 |
. 2
| |
| 3 | zaddcl 9385 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 |
| This theorem is referenced by: zadd2cl 9474 eluzadd 9649 eluzsub 9650 qaddcl 9728 fzen 10137 eluzgtdifelfzo 10292 exbtwnzlemstep 10356 qbtwnre 10365 flqaddz 10406 modaddmodup 10498 addmodlteq 10509 uzennn 10547 seq3shft2 10592 seqshft2g 10593 expaddzaplem 10693 sqoddm1div8 10804 iser3shft 11530 mptfzshft 11626 fsumshft 11628 fsumshftm 11629 fisumrev2 11630 isumshft 11674 fprodshft 11802 dvds2ln 12008 gcdaddm 12178 uzwodc 12231 lcmgcdlem 12272 divgcdcoprm0 12296 hashdvds 12416 pythagtriplem4 12464 pythagtriplem11 12470 pcaddlem 12535 gzmulcl 12574 4sqlem8 12581 4sqlem10 12583 4sqexercise2 12595 4sqlem11 12597 4sqlem14 12600 4sqlem16 12602 mulgdir 13362 plymullem1 15092 lgsquad2lem1 15430 2lgsoddprmlem2 15455 2sqlem4 15467 2sqlem8 15472 |
| Copyright terms: Public domain | W3C validator |