ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanapd Unicode version

Theorem mulcanapd 8637
Description: Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
Hypotheses
Ref Expression
mulcand.1  |-  ( ph  ->  A  e.  CC )
mulcand.2  |-  ( ph  ->  B  e.  CC )
mulcand.3  |-  ( ph  ->  C  e.  CC )
mulcand.4  |-  ( ph  ->  C #  0 )
Assertion
Ref Expression
mulcanapd  |-  ( ph  ->  ( ( C  x.  A )  =  ( C  x.  B )  <-> 
A  =  B ) )

Proof of Theorem mulcanapd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mulcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
2 mulcand.4 . . . 4  |-  ( ph  ->  C #  0 )
3 recexap 8629 . . . 4  |-  ( ( C  e.  CC  /\  C #  0 )  ->  E. x  e.  CC  ( C  x.  x )  =  1 )
41, 2, 3syl2anc 411 . . 3  |-  ( ph  ->  E. x  e.  CC  ( C  x.  x
)  =  1 )
5 oveq2 5899 . . . 4  |-  ( ( C  x.  A )  =  ( C  x.  B )  ->  (
x  x.  ( C  x.  A ) )  =  ( x  x.  ( C  x.  B
) ) )
6 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  x  e.  CC )
71adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  C  e.  CC )
86, 7mulcomd 7998 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  C
)  =  ( C  x.  x ) )
9 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( C  x.  x
)  =  1 )
108, 9eqtrd 2222 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  C
)  =  1 )
1110oveq1d 5906 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  A
)  =  ( 1  x.  A ) )
12 mulcand.1 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  A  e.  CC )
146, 7, 13mulassd 8000 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  A
)  =  ( x  x.  ( C  x.  A ) ) )
1513mulid2d 7995 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( 1  x.  A
)  =  A )
1611, 14, 153eqtr3d 2230 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  ( C  x.  A )
)  =  A )
1710oveq1d 5906 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  B
)  =  ( 1  x.  B ) )
18 mulcand.2 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
1918adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  B  e.  CC )
206, 7, 19mulassd 8000 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  B
)  =  ( x  x.  ( C  x.  B ) ) )
2119mulid2d 7995 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( 1  x.  B
)  =  B )
2217, 20, 213eqtr3d 2230 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  ( C  x.  B )
)  =  B )
2316, 22eqeq12d 2204 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  ( C  x.  A
) )  =  ( x  x.  ( C  x.  B ) )  <-> 
A  =  B ) )
245, 23imbitrid 154 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( C  x.  A )  =  ( C  x.  B )  ->  A  =  B ) )
254, 24rexlimddv 2612 . 2  |-  ( ph  ->  ( ( C  x.  A )  =  ( C  x.  B )  ->  A  =  B ) )
26 oveq2 5899 . 2  |-  ( A  =  B  ->  ( C  x.  A )  =  ( C  x.  B ) )
2725, 26impbid1 142 1  |-  ( ph  ->  ( ( C  x.  A )  =  ( C  x.  B )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   E.wrex 2469   class class class wbr 4018  (class class class)co 5891   CCcc 7828   0cc0 7830   1c1 7831    x. cmul 7835   # cap 8557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-apti 7945  ax-pre-ltadd 7946  ax-pre-mulgt0 7947  ax-pre-mulext 7948
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-reap 8551  df-ap 8558
This theorem is referenced by:  mulcanap2d  8638  mulcanapad  8639  mulcanap  8641  div11ap  8676  eqneg  8708  dvdscmulr  11846  qredeq  12115  cncongr1  12122  lgseisenlem2  14854
  Copyright terms: Public domain W3C validator