ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0 Unicode version

Theorem mulap0 8613
Description: The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
mulap0  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  x.  B ) #  0 )

Proof of Theorem mulap0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 recexap 8612 . . 3  |-  ( ( B  e.  CC  /\  B #  0 )  ->  E. x  e.  CC  ( B  x.  x )  =  1 )
21adantl 277 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  E. x  e.  CC  ( B  x.  x
)  =  1 )
3 simpllr 534 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  A #  0
)
4 simplll 533 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  A  e.  CC )
5 simplrl 535 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  B  e.  CC )
6 simprl 529 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  x  e.  CC )
74, 5, 6mulassd 7983 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( ( A  x.  B )  x.  x )  =  ( A  x.  ( B  x.  x ) ) )
8 simprr 531 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( B  x.  x )  =  1 )
98oveq2d 5893 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  ( B  x.  x
) )  =  ( A  x.  1 ) )
104mulridd 7976 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  1 )  =  A )
117, 9, 103eqtrd 2214 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( ( A  x.  B )  x.  x )  =  A )
126mul02d 8351 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( 0  x.  x )  =  0 )
133, 11, 123brtr4d 4037 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( ( A  x.  B )  x.  x ) #  ( 0  x.  x ) )
144, 5mulcld 7980 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  B )  e.  CC )
15 0cnd 7952 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  0  e.  CC )
16 mulext1 8571 . . . 4  |-  ( ( ( A  x.  B
)  e.  CC  /\  0  e.  CC  /\  x  e.  CC )  ->  (
( ( A  x.  B )  x.  x
) #  ( 0  x.  x )  ->  ( A  x.  B ) #  0 ) )
1714, 15, 6, 16syl3anc 1238 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( (
( A  x.  B
)  x.  x ) #  ( 0  x.  x
)  ->  ( A  x.  B ) #  0 ) )
1813, 17mpd 13 . 2  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  B ) #  0 )
192, 18rexlimddv 2599 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  x.  B ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4005  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    x. cmul 7818   # cap 8540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541
This theorem is referenced by:  mulap0b  8614  mulap0i  8615  mulap0d  8617  divmuldivap  8671  divdivdivap  8672  divmuleqap  8676  divadddivap  8686  conjmulap  8688  expcl2lemap  10534  expclzaplem  10546  lgsne0  14524
  Copyright terms: Public domain W3C validator