ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0 Unicode version

Theorem mulap0 8797
Description: The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
mulap0  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  x.  B ) #  0 )

Proof of Theorem mulap0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 recexap 8796 . . 3  |-  ( ( B  e.  CC  /\  B #  0 )  ->  E. x  e.  CC  ( B  x.  x )  =  1 )
21adantl 277 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  E. x  e.  CC  ( B  x.  x
)  =  1 )
3 simpllr 534 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  A #  0
)
4 simplll 533 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  A  e.  CC )
5 simplrl 535 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  B  e.  CC )
6 simprl 529 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  x  e.  CC )
74, 5, 6mulassd 8166 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( ( A  x.  B )  x.  x )  =  ( A  x.  ( B  x.  x ) ) )
8 simprr 531 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( B  x.  x )  =  1 )
98oveq2d 6016 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  ( B  x.  x
) )  =  ( A  x.  1 ) )
104mulridd 8159 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  1 )  =  A )
117, 9, 103eqtrd 2266 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( ( A  x.  B )  x.  x )  =  A )
126mul02d 8534 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( 0  x.  x )  =  0 )
133, 11, 123brtr4d 4114 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( ( A  x.  B )  x.  x ) #  ( 0  x.  x ) )
144, 5mulcld 8163 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  B )  e.  CC )
15 0cnd 8135 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  0  e.  CC )
16 mulext1 8755 . . . 4  |-  ( ( ( A  x.  B
)  e.  CC  /\  0  e.  CC  /\  x  e.  CC )  ->  (
( ( A  x.  B )  x.  x
) #  ( 0  x.  x )  ->  ( A  x.  B ) #  0 ) )
1714, 15, 6, 16syl3anc 1271 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( (
( A  x.  B
)  x.  x ) #  ( 0  x.  x
)  ->  ( A  x.  B ) #  0 ) )
1813, 17mpd 13 . 2  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  B ) #  0 )
192, 18rexlimddv 2653 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  x.  B ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    x. cmul 8000   # cap 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725
This theorem is referenced by:  mulap0b  8798  mulap0i  8799  mulap0d  8801  divmuldivap  8855  divdivdivap  8856  divmuleqap  8860  divadddivap  8870  conjmulap  8872  expcl2lemap  10768  expclzaplem  10780  lgsne0  15711
  Copyright terms: Public domain W3C validator