ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0 Unicode version

Theorem mulap0 8709
Description: The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
mulap0  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  x.  B ) #  0 )

Proof of Theorem mulap0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 recexap 8708 . . 3  |-  ( ( B  e.  CC  /\  B #  0 )  ->  E. x  e.  CC  ( B  x.  x )  =  1 )
21adantl 277 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  E. x  e.  CC  ( B  x.  x
)  =  1 )
3 simpllr 534 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  A #  0
)
4 simplll 533 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  A  e.  CC )
5 simplrl 535 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  B  e.  CC )
6 simprl 529 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  x  e.  CC )
74, 5, 6mulassd 8078 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( ( A  x.  B )  x.  x )  =  ( A  x.  ( B  x.  x ) ) )
8 simprr 531 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( B  x.  x )  =  1 )
98oveq2d 5950 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  ( B  x.  x
) )  =  ( A  x.  1 ) )
104mulridd 8071 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  1 )  =  A )
117, 9, 103eqtrd 2241 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( ( A  x.  B )  x.  x )  =  A )
126mul02d 8446 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( 0  x.  x )  =  0 )
133, 11, 123brtr4d 4075 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( ( A  x.  B )  x.  x ) #  ( 0  x.  x ) )
144, 5mulcld 8075 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  B )  e.  CC )
15 0cnd 8047 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  0  e.  CC )
16 mulext1 8667 . . . 4  |-  ( ( ( A  x.  B
)  e.  CC  /\  0  e.  CC  /\  x  e.  CC )  ->  (
( ( A  x.  B )  x.  x
) #  ( 0  x.  x )  ->  ( A  x.  B ) #  0 ) )
1714, 15, 6, 16syl3anc 1249 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( (
( A  x.  B
)  x.  x ) #  ( 0  x.  x
)  ->  ( A  x.  B ) #  0 ) )
1813, 17mpd 13 . 2  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( x  e.  CC  /\  ( B  x.  x
)  =  1 ) )  ->  ( A  x.  B ) #  0 )
192, 18rexlimddv 2627 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  x.  B ) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   E.wrex 2484   class class class wbr 4043  (class class class)co 5934   CCcc 7905   0cc0 7907   1c1 7908    x. cmul 7912   # cap 8636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-po 4341  df-iso 4342  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637
This theorem is referenced by:  mulap0b  8710  mulap0i  8711  mulap0d  8713  divmuldivap  8767  divdivdivap  8768  divmuleqap  8772  divadddivap  8782  conjmulap  8784  expcl2lemap  10677  expclzaplem  10689  lgsne0  15433
  Copyright terms: Public domain W3C validator