ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgex Unicode version

Theorem mulgex 13193
Description: Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
Assertion
Ref Expression
mulgex  |-  ( G  e.  V  ->  (.g `  G )  e.  _V )

Proof of Theorem mulgex
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2193 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 eqid 2193 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 eqid 2193 . . 3  |-  ( invg `  G )  =  ( invg `  G )
5 eqid 2193 . . 3  |-  (.g `  G
)  =  (.g `  G
)
61, 2, 3, 4, 5mulgfvalg 13191 . 2  |-  ( G  e.  V  ->  (.g `  G )  =  ( n  e.  ZZ ,  x  e.  ( Base `  G )  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) ) )
7 zex 9326 . . 3  |-  ZZ  e.  _V
8 basfn 12676 . . . 4  |-  Base  Fn  _V
9 elex 2771 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
10 funfvex 5571 . . . . 5  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5354 . . . 4  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . 3  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
13 mpoexga 6265 . . 3  |-  ( ( ZZ  e.  _V  /\  ( Base `  G )  e.  _V )  ->  (
n  e.  ZZ ,  x  e.  ( Base `  G )  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  e.  _V )
147, 12, 13sylancr 414 . 2  |-  ( G  e.  V  ->  (
n  e.  ZZ ,  x  e.  ( Base `  G )  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  e.  _V )
156, 14eqeltrd 2270 1  |-  ( G  e.  V  ->  (.g `  G )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   ifcif 3557   {csn 3618   class class class wbr 4029    X. cxp 4657    Fn wfn 5249   ` cfv 5254    e. cmpo 5920   0cc0 7872   1c1 7873    < clt 8054   -ucneg 8191   NNcn 8982   ZZcz 9317    seqcseq 10518   Basecbs 12618   +g cplusg 12695   0gc0g 12867   invgcminusg 13073  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-neg 8193  df-inn 8983  df-z 9318  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-mulg 13190
This theorem is referenced by:  zlmval  14115  zlmlemg  14116  zlmsca  14120  zlmvscag  14121
  Copyright terms: Public domain W3C validator