ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgex Unicode version

Theorem mulgex 13401
Description: Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
Assertion
Ref Expression
mulgex  |-  ( G  e.  V  ->  (.g `  G )  e.  _V )

Proof of Theorem mulgex
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2204 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 eqid 2204 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 eqid 2204 . . 3  |-  ( invg `  G )  =  ( invg `  G )
5 eqid 2204 . . 3  |-  (.g `  G
)  =  (.g `  G
)
61, 2, 3, 4, 5mulgfvalg 13399 . 2  |-  ( G  e.  V  ->  (.g `  G )  =  ( n  e.  ZZ ,  x  e.  ( Base `  G )  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) ) )
7 zex 9380 . . 3  |-  ZZ  e.  _V
8 basfn 12832 . . . 4  |-  Base  Fn  _V
9 elex 2782 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
10 funfvex 5592 . . . . 5  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5375 . . . 4  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . 3  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
13 mpoexga 6297 . . 3  |-  ( ( ZZ  e.  _V  /\  ( Base `  G )  e.  _V )  ->  (
n  e.  ZZ ,  x  e.  ( Base `  G )  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  e.  _V )
147, 12, 13sylancr 414 . 2  |-  ( G  e.  V  ->  (
n  e.  ZZ ,  x  e.  ( Base `  G )  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  e.  _V )
156, 14eqeltrd 2281 1  |-  ( G  e.  V  ->  (.g `  G )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771   ifcif 3570   {csn 3632   class class class wbr 4043    X. cxp 4672    Fn wfn 5265   ` cfv 5270    e. cmpo 5945   0cc0 7924   1c1 7925    < clt 8106   -ucneg 8243   NNcn 9035   ZZcz 9371    seqcseq 10590   Basecbs 12774   +g cplusg 12851   0gc0g 13030   invgcminusg 13275  .gcmg 13397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-neg 8245  df-inn 9036  df-z 9372  df-seqfrec 10591  df-ndx 12777  df-slot 12778  df-base 12780  df-mulg 13398
This theorem is referenced by:  zlmval  14331  zlmlemg  14332  zlmsca  14336  zlmvscag  14337
  Copyright terms: Public domain W3C validator