ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgex Unicode version

Theorem mulgex 13655
Description: Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
Assertion
Ref Expression
mulgex  |-  ( G  e.  V  ->  (.g `  G )  e.  _V )

Proof of Theorem mulgex
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 eqid 2229 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 eqid 2229 . . 3  |-  ( invg `  G )  =  ( invg `  G )
5 eqid 2229 . . 3  |-  (.g `  G
)  =  (.g `  G
)
61, 2, 3, 4, 5mulgfvalg 13653 . 2  |-  ( G  e.  V  ->  (.g `  G )  =  ( n  e.  ZZ ,  x  e.  ( Base `  G )  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) ) )
7 zex 9451 . . 3  |-  ZZ  e.  _V
8 basfn 13086 . . . 4  |-  Base  Fn  _V
9 elex 2811 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
10 funfvex 5643 . . . . 5  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5422 . . . 4  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . 3  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
13 mpoexga 6356 . . 3  |-  ( ( ZZ  e.  _V  /\  ( Base `  G )  e.  _V )  ->  (
n  e.  ZZ ,  x  e.  ( Base `  G )  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  e.  _V )
147, 12, 13sylancr 414 . 2  |-  ( G  e.  V  ->  (
n  e.  ZZ ,  x  e.  ( Base `  G )  |->  if ( n  =  0 ,  ( 0g `  G
) ,  if ( 0  <  n ,  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { x }
) ) `  n
) ,  ( ( invg `  G
) `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { x } ) ) `  -u n ) ) ) ) )  e.  _V )
156, 14eqeltrd 2306 1  |-  ( G  e.  V  ->  (.g `  G )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   ifcif 3602   {csn 3666   class class class wbr 4082    X. cxp 4716    Fn wfn 5312   ` cfv 5317    e. cmpo 6002   0cc0 7995   1c1 7996    < clt 8177   -ucneg 8314   NNcn 9106   ZZcz 9442    seqcseq 10664   Basecbs 13027   +g cplusg 13105   0gc0g 13284   invgcminusg 13529  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-neg 8316  df-inn 9107  df-z 9443  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-mulg 13652
This theorem is referenced by:  zlmval  14585  zlmlemg  14586  zlmsca  14590  zlmvscag  14591
  Copyright terms: Public domain W3C validator