| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgex | GIF version | ||
| Description: Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.) |
| Ref | Expression |
|---|---|
| mulgex | ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2196 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2196 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | eqid 2196 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 5 | eqid 2196 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | mulgfvalg 13251 | . 2 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) = (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛)))))) |
| 7 | zex 9335 | . . 3 ⊢ ℤ ∈ V | |
| 8 | basfn 12736 | . . . 4 ⊢ Base Fn V | |
| 9 | elex 2774 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 10 | funfvex 5575 | . . . . 5 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 11 | 10 | funfni 5358 | . . . 4 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
| 13 | mpoexga 6270 | . . 3 ⊢ ((ℤ ∈ V ∧ (Base‘𝐺) ∈ V) → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) | |
| 14 | 7, 12, 13 | sylancr 414 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) |
| 15 | 6, 14 | eqeltrd 2273 | 1 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ifcif 3561 {csn 3622 class class class wbr 4033 × cxp 4661 Fn wfn 5253 ‘cfv 5258 ∈ cmpo 5924 0cc0 7879 1c1 7880 < clt 8061 -cneg 8198 ℕcn 8990 ℤcz 9326 seqcseq 10539 Basecbs 12678 +gcplusg 12755 0gc0g 12927 invgcminusg 13133 .gcmg 13249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-neg 8200 df-inn 8991 df-z 9327 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-mulg 13250 |
| This theorem is referenced by: zlmval 14183 zlmlemg 14184 zlmsca 14188 zlmvscag 14189 |
| Copyright terms: Public domain | W3C validator |