| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgex | GIF version | ||
| Description: Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.) |
| Ref | Expression |
|---|---|
| mulgex | ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2206 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2206 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | eqid 2206 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 5 | eqid 2206 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | mulgfvalg 13501 | . 2 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) = (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛)))))) |
| 7 | zex 9388 | . . 3 ⊢ ℤ ∈ V | |
| 8 | basfn 12934 | . . . 4 ⊢ Base Fn V | |
| 9 | elex 2784 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 10 | funfvex 5600 | . . . . 5 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 11 | 10 | funfni 5381 | . . . 4 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
| 13 | mpoexga 6305 | . . 3 ⊢ ((ℤ ∈ V ∧ (Base‘𝐺) ∈ V) → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) | |
| 14 | 7, 12, 13 | sylancr 414 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) |
| 15 | 6, 14 | eqeltrd 2283 | 1 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ifcif 3572 {csn 3634 class class class wbr 4047 × cxp 4677 Fn wfn 5271 ‘cfv 5276 ∈ cmpo 5953 0cc0 7932 1c1 7933 < clt 8114 -cneg 8251 ℕcn 9043 ℤcz 9379 seqcseq 10599 Basecbs 12876 +gcplusg 12953 0gc0g 13132 invgcminusg 13377 .gcmg 13499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-neg 8253 df-inn 9044 df-z 9380 df-seqfrec 10600 df-ndx 12879 df-slot 12880 df-base 12882 df-mulg 13500 |
| This theorem is referenced by: zlmval 14433 zlmlemg 14434 zlmsca 14438 zlmvscag 14439 |
| Copyright terms: Public domain | W3C validator |