![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulgex | GIF version |
Description: Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.) |
Ref | Expression |
---|---|
mulgex | ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2189 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2189 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | eqid 2189 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
5 | eqid 2189 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
6 | 1, 2, 3, 4, 5 | mulgfvalg 13060 | . 2 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) = (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛)))))) |
7 | zex 9291 | . . 3 ⊢ ℤ ∈ V | |
8 | basfn 12569 | . . . 4 ⊢ Base Fn V | |
9 | elex 2763 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
10 | funfvex 5551 | . . . . 5 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
11 | 10 | funfni 5335 | . . . 4 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
12 | 8, 9, 11 | sylancr 414 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
13 | mpoexga 6236 | . . 3 ⊢ ((ℤ ∈ V ∧ (Base‘𝐺) ∈ V) → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) | |
14 | 7, 12, 13 | sylancr 414 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) |
15 | 6, 14 | eqeltrd 2266 | 1 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ifcif 3549 {csn 3607 class class class wbr 4018 × cxp 4642 Fn wfn 5230 ‘cfv 5235 ∈ cmpo 5897 0cc0 7840 1c1 7841 < clt 8021 -cneg 8158 ℕcn 8948 ℤcz 9282 seqcseq 10475 Basecbs 12511 +gcplusg 12586 0gc0g 12758 invgcminusg 12943 .gcmg 13058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7931 ax-resscn 7932 ax-1re 7934 ax-addrcl 7937 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1st 6164 df-2nd 6165 df-recs 6329 df-frec 6415 df-neg 8160 df-inn 8949 df-z 9283 df-seqfrec 10476 df-ndx 12514 df-slot 12515 df-base 12517 df-mulg 13059 |
This theorem is referenced by: zlmval 13920 zlmlemg 13921 zlmsca 13925 zlmvscag 13926 |
Copyright terms: Public domain | W3C validator |