ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgex GIF version

Theorem mulgex 13668
Description: Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
Assertion
Ref Expression
mulgex (𝐺𝑉 → (.g𝐺) ∈ V)

Proof of Theorem mulgex
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2229 . . 3 (+g𝐺) = (+g𝐺)
3 eqid 2229 . . 3 (0g𝐺) = (0g𝐺)
4 eqid 2229 . . 3 (invg𝐺) = (invg𝐺)
5 eqid 2229 . . 3 (.g𝐺) = (.g𝐺)
61, 2, 3, 4, 5mulgfvalg 13666 . 2 (𝐺𝑉 → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))))
7 zex 9463 . . 3 ℤ ∈ V
8 basfn 13099 . . . 4 Base Fn V
9 elex 2811 . . . 4 (𝐺𝑉𝐺 ∈ V)
10 funfvex 5646 . . . . 5 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5423 . . . 4 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . 3 (𝐺𝑉 → (Base‘𝐺) ∈ V)
13 mpoexga 6364 . . 3 ((ℤ ∈ V ∧ (Base‘𝐺) ∈ V) → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V)
147, 12, 13sylancr 414 . 2 (𝐺𝑉 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V)
156, 14eqeltrd 2306 1 (𝐺𝑉 → (.g𝐺) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  ifcif 3602  {csn 3666   class class class wbr 4083   × cxp 4717   Fn wfn 5313  cfv 5318  cmpo 6009  0cc0 8007  1c1 8008   < clt 8189  -cneg 8326  cn 9118  cz 9454  seqcseq 10677  Basecbs 13040  +gcplusg 13118  0gc0g 13297  invgcminusg 13542  .gcmg 13664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-neg 8328  df-inn 9119  df-z 9455  df-seqfrec 10678  df-ndx 13043  df-slot 13044  df-base 13046  df-mulg 13665
This theorem is referenced by:  zlmval  14599  zlmlemg  14600  zlmsca  14604  zlmvscag  14605
  Copyright terms: Public domain W3C validator