| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgex | GIF version | ||
| Description: Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.) |
| Ref | Expression |
|---|---|
| mulgex | ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2209 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2209 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | eqid 2209 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 5 | eqid 2209 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | mulgfvalg 13624 | . 2 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) = (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛)))))) |
| 7 | zex 9423 | . . 3 ⊢ ℤ ∈ V | |
| 8 | basfn 13057 | . . . 4 ⊢ Base Fn V | |
| 9 | elex 2791 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 10 | funfvex 5620 | . . . . 5 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 11 | 10 | funfni 5399 | . . . 4 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
| 13 | mpoexga 6328 | . . 3 ⊢ ((ℤ ∈ V ∧ (Base‘𝐺) ∈ V) → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) | |
| 14 | 7, 12, 13 | sylancr 414 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) |
| 15 | 6, 14 | eqeltrd 2286 | 1 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ifcif 3582 {csn 3646 class class class wbr 4062 × cxp 4694 Fn wfn 5289 ‘cfv 5294 ∈ cmpo 5976 0cc0 7967 1c1 7968 < clt 8149 -cneg 8286 ℕcn 9078 ℤcz 9414 seqcseq 10636 Basecbs 12998 +gcplusg 13076 0gc0g 13255 invgcminusg 13500 .gcmg 13622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-neg 8288 df-inn 9079 df-z 9415 df-seqfrec 10637 df-ndx 13001 df-slot 13002 df-base 13004 df-mulg 13623 |
| This theorem is referenced by: zlmval 14556 zlmlemg 14557 zlmsca 14561 zlmvscag 14562 |
| Copyright terms: Public domain | W3C validator |