![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulgex | GIF version |
Description: Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.) |
Ref | Expression |
---|---|
mulgex | ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2193 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2193 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | eqid 2193 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
5 | eqid 2193 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
6 | 1, 2, 3, 4, 5 | mulgfvalg 13194 | . 2 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) = (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛)))))) |
7 | zex 9329 | . . 3 ⊢ ℤ ∈ V | |
8 | basfn 12679 | . . . 4 ⊢ Base Fn V | |
9 | elex 2771 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
10 | funfvex 5572 | . . . . 5 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
11 | 10 | funfni 5355 | . . . 4 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
12 | 8, 9, 11 | sylancr 414 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
13 | mpoexga 6267 | . . 3 ⊢ ((ℤ ∈ V ∧ (Base‘𝐺) ∈ V) → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) | |
14 | 7, 12, 13 | sylancr 414 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) |
15 | 6, 14 | eqeltrd 2270 | 1 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ifcif 3558 {csn 3619 class class class wbr 4030 × cxp 4658 Fn wfn 5250 ‘cfv 5255 ∈ cmpo 5921 0cc0 7874 1c1 7875 < clt 8056 -cneg 8193 ℕcn 8984 ℤcz 9320 seqcseq 10521 Basecbs 12621 +gcplusg 12698 0gc0g 12870 invgcminusg 13076 .gcmg 13192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-neg 8195 df-inn 8985 df-z 9321 df-seqfrec 10522 df-ndx 12624 df-slot 12625 df-base 12627 df-mulg 13193 |
This theorem is referenced by: zlmval 14126 zlmlemg 14127 zlmsca 14131 zlmvscag 14132 |
Copyright terms: Public domain | W3C validator |