| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgex | GIF version | ||
| Description: Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.) |
| Ref | Expression |
|---|---|
| mulgex | ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2229 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2229 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | eqid 2229 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 5 | eqid 2229 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | mulgfvalg 13666 | . 2 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) = (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛)))))) |
| 7 | zex 9463 | . . 3 ⊢ ℤ ∈ V | |
| 8 | basfn 13099 | . . . 4 ⊢ Base Fn V | |
| 9 | elex 2811 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 10 | funfvex 5646 | . . . . 5 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 11 | 10 | funfni 5423 | . . . 4 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
| 13 | mpoexga 6364 | . . 3 ⊢ ((ℤ ∈ V ∧ (Base‘𝐺) ∈ V) → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) | |
| 14 | 7, 12, 13 | sylancr 414 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝐺) ↦ if(𝑛 = 0, (0g‘𝐺), if(0 < 𝑛, (seq1((+g‘𝐺), (ℕ × {𝑥}))‘𝑛), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑥}))‘-𝑛))))) ∈ V) |
| 15 | 6, 14 | eqeltrd 2306 | 1 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ifcif 3602 {csn 3666 class class class wbr 4083 × cxp 4717 Fn wfn 5313 ‘cfv 5318 ∈ cmpo 6009 0cc0 8007 1c1 8008 < clt 8189 -cneg 8326 ℕcn 9118 ℤcz 9454 seqcseq 10677 Basecbs 13040 +gcplusg 13118 0gc0g 13297 invgcminusg 13542 .gcmg 13664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-neg 8328 df-inn 9119 df-z 9455 df-seqfrec 10678 df-ndx 13043 df-slot 13044 df-base 13046 df-mulg 13665 |
| This theorem is referenced by: zlmval 14599 zlmlemg 14600 zlmsca 14604 zlmvscag 14605 |
| Copyright terms: Public domain | W3C validator |