| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidi | GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mullidi | ⊢ (1 · 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mullid 8041 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 1c1 7897 · cmul 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-mulcom 7997 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: halfpm6th 9228 div4p1lem1div2 9262 3halfnz 9440 sq10 10821 fac2 10840 efival 11914 ef01bndlem 11938 3dvdsdec 12047 3dvds2dec 12048 odd2np1lem 12054 m1expo 12082 m1exp1 12083 nno 12088 dec5nprm 12608 2exp8 12629 sin2pim 15133 cos2pim 15134 sincosq3sgn 15148 sincosq4sgn 15149 cosq23lt0 15153 tangtx 15158 sincosq1eq 15159 sincos4thpi 15160 sincos6thpi 15162 abssinper 15166 cosq34lt1 15170 lgsdir2lem1 15353 lgsdir2lem4 15356 lgsdir2lem5 15357 2lgsoddprmlem3c 15434 ex-fl 15455 |
| Copyright terms: Public domain | W3C validator |