ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullidi GIF version

Theorem mullidi 8029
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
Hypothesis
Ref Expression
axi.1 𝐴 ∈ ℂ
Assertion
Ref Expression
mullidi (1 · 𝐴) = 𝐴

Proof of Theorem mullidi
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 mullid 8024 . 2 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
31, 2ax-mp 5 1 (1 · 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7877  1c1 7880   · cmul 7884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-mulcl 7977  ax-mulcom 7980  ax-mulass 7982  ax-distr 7983  ax-1rid 7986  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  halfpm6th  9211  div4p1lem1div2  9245  3halfnz  9423  sq10  10804  fac2  10823  efival  11897  ef01bndlem  11921  3dvdsdec  12030  3dvds2dec  12031  odd2np1lem  12037  m1expo  12065  m1exp1  12066  nno  12071  dec5nprm  12583  2exp8  12604  sin2pim  15049  cos2pim  15050  sincosq3sgn  15064  sincosq4sgn  15065  cosq23lt0  15069  tangtx  15074  sincosq1eq  15075  sincos4thpi  15076  sincos6thpi  15078  abssinper  15082  cosq34lt1  15086  lgsdir2lem1  15269  lgsdir2lem4  15272  lgsdir2lem5  15273  2lgsoddprmlem3c  15350  ex-fl  15371
  Copyright terms: Public domain W3C validator