![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mullidi | GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mullidi | ⊢ (1 · 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mullid 7969 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 (class class class)co 5888 ℂcc 7823 1c1 7826 · cmul 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-resscn 7917 ax-1cn 7918 ax-icn 7920 ax-addcl 7921 ax-mulcl 7923 ax-mulcom 7926 ax-mulass 7928 ax-distr 7929 ax-1rid 7932 ax-cnre 7936 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-iota 5190 df-fv 5236 df-ov 5891 |
This theorem is referenced by: halfpm6th 9153 div4p1lem1div2 9186 3halfnz 9364 sq10 10706 fac2 10725 efival 11754 ef01bndlem 11778 3dvdsdec 11884 3dvds2dec 11885 odd2np1lem 11891 m1expo 11919 m1exp1 11920 nno 11925 sin2pim 14530 cos2pim 14531 sincosq3sgn 14545 sincosq4sgn 14546 cosq23lt0 14550 tangtx 14555 sincosq1eq 14556 sincos4thpi 14557 sincos6thpi 14559 abssinper 14563 cosq34lt1 14567 lgsdir2lem1 14725 lgsdir2lem4 14728 lgsdir2lem5 14729 2lgsoddprmlem3c 14753 ex-fl 14773 |
Copyright terms: Public domain | W3C validator |