| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidi | GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mullidi | ⊢ (1 · 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mullid 8140 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 1c1 7996 · cmul 8000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-mulcom 8096 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: halfpm6th 9327 div4p1lem1div2 9361 3halfnz 9540 sq10 10929 fac2 10948 efival 12238 ef01bndlem 12262 3dvdsdec 12371 3dvds2dec 12372 odd2np1lem 12378 m1expo 12406 m1exp1 12407 nno 12412 dec5nprm 12932 2exp8 12953 sin2pim 15481 cos2pim 15482 sincosq3sgn 15496 sincosq4sgn 15497 cosq23lt0 15501 tangtx 15506 sincosq1eq 15507 sincos4thpi 15508 sincos6thpi 15510 abssinper 15514 cosq34lt1 15518 lgsdir2lem1 15701 lgsdir2lem4 15704 lgsdir2lem5 15705 2lgsoddprmlem3c 15782 ex-fl 16047 |
| Copyright terms: Public domain | W3C validator |