| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullidi | GIF version | ||
| Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mullidi | ⊢ (1 · 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mullid 8085 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5956 ℂcc 7938 1c1 7941 · cmul 7945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8032 ax-1cn 8033 ax-icn 8035 ax-addcl 8036 ax-mulcl 8038 ax-mulcom 8041 ax-mulass 8043 ax-distr 8044 ax-1rid 8047 ax-cnre 8051 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-iota 5240 df-fv 5287 df-ov 5959 |
| This theorem is referenced by: halfpm6th 9272 div4p1lem1div2 9306 3halfnz 9485 sq10 10874 fac2 10893 efival 12113 ef01bndlem 12137 3dvdsdec 12246 3dvds2dec 12247 odd2np1lem 12253 m1expo 12281 m1exp1 12282 nno 12287 dec5nprm 12807 2exp8 12828 sin2pim 15355 cos2pim 15356 sincosq3sgn 15370 sincosq4sgn 15371 cosq23lt0 15375 tangtx 15380 sincosq1eq 15381 sincos4thpi 15382 sincos6thpi 15384 abssinper 15388 cosq34lt1 15392 lgsdir2lem1 15575 lgsdir2lem4 15578 lgsdir2lem5 15579 2lgsoddprmlem3c 15656 ex-fl 15795 |
| Copyright terms: Public domain | W3C validator |