ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0o Unicode version

Theorem nn0o 11906
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )

Proof of Theorem nn0o
StepHypRef Expression
1 nn0o1gt2 11904 . 2  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
2 1m1e0 8986 . . . . . . . 8  |-  ( 1  -  1 )  =  0
32oveq1i 5884 . . . . . . 7  |-  ( ( 1  -  1 )  /  2 )  =  ( 0  /  2
)
4 2cn 8988 . . . . . . . 8  |-  2  e.  CC
5 2ap0 9010 . . . . . . . 8  |-  2 #  0
64, 5div0api 8701 . . . . . . 7  |-  ( 0  /  2 )  =  0
73, 6eqtri 2198 . . . . . 6  |-  ( ( 1  -  1 )  /  2 )  =  0
8 0nn0 9189 . . . . . 6  |-  0  e.  NN0
97, 8eqeltri 2250 . . . . 5  |-  ( ( 1  -  1 )  /  2 )  e. 
NN0
10 oveq1 5881 . . . . . . . 8  |-  ( N  =  1  ->  ( N  -  1 )  =  ( 1  -  1 ) )
1110oveq1d 5889 . . . . . . 7  |-  ( N  =  1  ->  (
( N  -  1 )  /  2 )  =  ( ( 1  -  1 )  / 
2 ) )
1211eleq1d 2246 . . . . . 6  |-  ( N  =  1  ->  (
( ( N  - 
1 )  /  2
)  e.  NN0  <->  ( (
1  -  1 )  /  2 )  e. 
NN0 ) )
1312adantr 276 . . . . 5  |-  ( ( N  =  1  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( (
( N  -  1 )  /  2 )  e.  NN0  <->  ( ( 1  -  1 )  / 
2 )  e.  NN0 ) )
149, 13mpbiri 168 . . . 4  |-  ( ( N  =  1  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  -  1 )  /  2 )  e. 
NN0 )
1514ex 115 . . 3  |-  ( N  =  1  ->  (
( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
16 2z 9279 . . . . . . . 8  |-  2  e.  ZZ
1716a1i 9 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  2  e.  ZZ )
18 nn0z 9271 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
1918ad2antrl 490 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  N  e.  ZZ )
20 2re 8987 . . . . . . . . . 10  |-  2  e.  RR
21 nn0re 9183 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
22 ltle 8043 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  <  N  ->  2  <_  N )
)
2320, 21, 22sylancr 414 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  <  N  ->  2  <_  N ) )
2423adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( 2  <  N  ->  2  <_  N )
)
2524impcom 125 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  2  <_  N )
26 eluz2 9532 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
2717, 19, 25, 26syl3anbrc 1181 . . . . . 6  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  N  e.  ( ZZ>= `  2 )
)
28 simprr 531 . . . . . 6  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  +  1 )  /  2 )  e. 
NN0 )
2927, 28jca 306 . . . . 5  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( N  e.  ( ZZ>= `  2 )  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)
30 nno 11905 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
31 nnnn0 9181 . . . . 5  |-  ( ( ( N  -  1 )  /  2 )  e.  NN  ->  (
( N  -  1 )  /  2 )  e.  NN0 )
3229, 30, 313syl 17 . . . 4  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  -  1 )  /  2 )  e. 
NN0 )
3332ex 115 . . 3  |-  ( 2  <  N  ->  (
( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
3415, 33jaoi 716 . 2  |-  ( ( N  =  1  \/  2  <  N )  ->  ( ( N  e.  NN0  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN0 )
)
351, 34mpcom 36 1  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   RRcr 7809   0cc0 7810   1c1 7811    + caddc 7813    < clt 7990    <_ cle 7991    - cmin 8126    / cdiv 8627   NNcn 8917   2c2 8968   NN0cn0 9174   ZZcz 9251   ZZ>=cuz 9526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-n0 9175  df-z 9252  df-uz 9527
This theorem is referenced by:  nn0ob  11907
  Copyright terms: Public domain W3C validator