ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0o Unicode version

Theorem nn0o 11000
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )

Proof of Theorem nn0o
StepHypRef Expression
1 nn0o1gt2 10998 . 2  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
2 1m1e0 8462 . . . . . . . 8  |-  ( 1  -  1 )  =  0
32oveq1i 5644 . . . . . . 7  |-  ( ( 1  -  1 )  /  2 )  =  ( 0  /  2
)
4 2cn 8464 . . . . . . . 8  |-  2  e.  CC
5 2ap0 8486 . . . . . . . 8  |-  2 #  0
64, 5div0api 8187 . . . . . . 7  |-  ( 0  /  2 )  =  0
73, 6eqtri 2108 . . . . . 6  |-  ( ( 1  -  1 )  /  2 )  =  0
8 0nn0 8658 . . . . . 6  |-  0  e.  NN0
97, 8eqeltri 2160 . . . . 5  |-  ( ( 1  -  1 )  /  2 )  e. 
NN0
10 oveq1 5641 . . . . . . . 8  |-  ( N  =  1  ->  ( N  -  1 )  =  ( 1  -  1 ) )
1110oveq1d 5649 . . . . . . 7  |-  ( N  =  1  ->  (
( N  -  1 )  /  2 )  =  ( ( 1  -  1 )  / 
2 ) )
1211eleq1d 2156 . . . . . 6  |-  ( N  =  1  ->  (
( ( N  - 
1 )  /  2
)  e.  NN0  <->  ( (
1  -  1 )  /  2 )  e. 
NN0 ) )
1312adantr 270 . . . . 5  |-  ( ( N  =  1  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( (
( N  -  1 )  /  2 )  e.  NN0  <->  ( ( 1  -  1 )  / 
2 )  e.  NN0 ) )
149, 13mpbiri 166 . . . 4  |-  ( ( N  =  1  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  -  1 )  /  2 )  e. 
NN0 )
1514ex 113 . . 3  |-  ( N  =  1  ->  (
( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
16 2z 8748 . . . . . . . 8  |-  2  e.  ZZ
1716a1i 9 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  2  e.  ZZ )
18 nn0z 8740 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
1918ad2antrl 474 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  N  e.  ZZ )
20 2re 8463 . . . . . . . . . 10  |-  2  e.  RR
21 nn0re 8652 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
22 ltle 7551 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  <  N  ->  2  <_  N )
)
2320, 21, 22sylancr 405 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  <  N  ->  2  <_  N ) )
2423adantr 270 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( 2  <  N  ->  2  <_  N )
)
2524impcom 123 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  2  <_  N )
26 eluz2 8994 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
2717, 19, 25, 26syl3anbrc 1127 . . . . . 6  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  N  e.  ( ZZ>= `  2 )
)
28 simprr 499 . . . . . 6  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  +  1 )  /  2 )  e. 
NN0 )
2927, 28jca 300 . . . . 5  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( N  e.  ( ZZ>= `  2 )  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)
30 nno 10999 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
31 nnnn0 8650 . . . . 5  |-  ( ( ( N  -  1 )  /  2 )  e.  NN  ->  (
( N  -  1 )  /  2 )  e.  NN0 )
3229, 30, 313syl 17 . . . 4  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  -  1 )  /  2 )  e. 
NN0 )
3332ex 113 . . 3  |-  ( 2  <  N  ->  (
( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
3415, 33jaoi 671 . 2  |-  ( ( N  =  1  \/  2  <  N )  ->  ( ( N  e.  NN0  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN0 )
)
351, 34mpcom 36 1  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    = wceq 1289    e. wcel 1438   class class class wbr 3837   ` cfv 5002  (class class class)co 5634   RRcr 7328   0cc0 7329   1c1 7330    + caddc 7332    < clt 7501    <_ cle 7502    - cmin 7632    / cdiv 8113   NNcn 8394   2c2 8444   NN0cn0 8643   ZZcz 8720   ZZ>=cuz 8988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989
This theorem is referenced by:  nn0ob  11001
  Copyright terms: Public domain W3C validator