![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ob | GIF version |
Description: Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.) |
Ref | Expression |
---|---|
nn0ob | ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0o 11947 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) | |
2 | nn0cn 9217 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
3 | xp1d2m1eqxm1d2 9202 | . . . . . . 7 ⊢ (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2)) | |
4 | 3 | eqcomd 2195 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1)) |
5 | 2, 4 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1)) |
6 | peano2cnm 8254 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | |
7 | 2, 6 | syl 14 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ) |
8 | 7 | halfcld 9194 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℂ) |
9 | 1cnd 8004 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
10 | peano2nn0 9247 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
11 | 10 | nn0cnd 9262 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ) |
12 | 11 | halfcld 9194 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℂ) |
13 | 8, 9, 12 | addlsub 8358 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2) ↔ ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1))) |
14 | 5, 13 | mpbird 167 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2)) |
15 | 14 | adantr 276 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2)) |
16 | peano2nn0 9247 | . . . 4 ⊢ (((𝑁 − 1) / 2) ∈ ℕ0 → (((𝑁 − 1) / 2) + 1) ∈ ℕ0) | |
17 | 16 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (((𝑁 − 1) / 2) + 1) ∈ ℕ0) |
18 | 15, 17 | eqeltrrd 2267 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ0) |
19 | 1, 18 | impbida 596 | 1 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 (class class class)co 5897 ℂcc 7840 1c1 7843 + caddc 7845 − cmin 8159 / cdiv 8660 2c2 9001 ℕ0cn0 9207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-po 4314 df-iso 4315 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-n0 9208 df-z 9285 df-uz 9560 |
This theorem is referenced by: nn0oddm1d2 11949 |
Copyright terms: Public domain | W3C validator |