ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ob GIF version

Theorem nn0ob 11612
Description: Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
Assertion
Ref Expression
nn0ob (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))

Proof of Theorem nn0ob
StepHypRef Expression
1 nn0o 11611 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
2 nn0cn 8994 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
3 xp1d2m1eqxm1d2 8979 . . . . . . 7 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
43eqcomd 2145 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1))
52, 4syl 14 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1))
6 peano2cnm 8035 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ)
72, 6syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
87halfcld 8971 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℂ)
9 1cnd 7789 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
10 peano2nn0 9024 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1110nn0cnd 9039 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
1211halfcld 8971 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℂ)
138, 9, 12addlsub 8139 . . . . 5 (𝑁 ∈ ℕ0 → ((((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2) ↔ ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1)))
145, 13mpbird 166 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2))
1514adantr 274 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2))
16 peano2nn0 9024 . . . 4 (((𝑁 − 1) / 2) ∈ ℕ0 → (((𝑁 − 1) / 2) + 1) ∈ ℕ0)
1716adantl 275 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (((𝑁 − 1) / 2) + 1) ∈ ℕ0)
1815, 17eqeltrrd 2217 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ0)
191, 18impbida 585 1 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  (class class class)co 5774  cc 7625  1c1 7628   + caddc 7630  cmin 7940   / cdiv 8439  2c2 8778  0cn0 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334
This theorem is referenced by:  nn0oddm1d2  11613
  Copyright terms: Public domain W3C validator