ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ob GIF version

Theorem nn0ob 11834
Description: Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
Assertion
Ref Expression
nn0ob (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))

Proof of Theorem nn0ob
StepHypRef Expression
1 nn0o 11833 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
2 nn0cn 9116 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
3 xp1d2m1eqxm1d2 9101 . . . . . . 7 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
43eqcomd 2170 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1))
52, 4syl 14 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1))
6 peano2cnm 8156 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ)
72, 6syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
87halfcld 9093 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℂ)
9 1cnd 7907 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
10 peano2nn0 9146 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1110nn0cnd 9161 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
1211halfcld 9093 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℂ)
138, 9, 12addlsub 8260 . . . . 5 (𝑁 ∈ ℕ0 → ((((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2) ↔ ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1)))
145, 13mpbird 166 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2))
1514adantr 274 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2))
16 peano2nn0 9146 . . . 4 (((𝑁 − 1) / 2) ∈ ℕ0 → (((𝑁 − 1) / 2) + 1) ∈ ℕ0)
1716adantl 275 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (((𝑁 − 1) / 2) + 1) ∈ ℕ0)
1815, 17eqeltrrd 2242 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ0)
191, 18impbida 586 1 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  (class class class)co 5837  cc 7743  1c1 7746   + caddc 7748  cmin 8061   / cdiv 8560  2c2 8900  0cn0 9106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-br 3978  df-opab 4039  df-mpt 4040  df-id 4266  df-po 4269  df-iso 4270  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561  df-inn 8850  df-2 8908  df-3 8909  df-4 8910  df-n0 9107  df-z 9184  df-uz 9459
This theorem is referenced by:  nn0oddm1d2  11835
  Copyright terms: Public domain W3C validator