| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cnd | Unicode version | ||
| Description: A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nn0red.1 |
|
| Ref | Expression |
|---|---|
| nn0cnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0red.1 |
. . 3
| |
| 2 | 1 | nn0red 9320 |
. 2
|
| 3 | 2 | recnd 8072 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-int 3876 df-inn 9008 df-n0 9267 |
| This theorem is referenced by: modsumfzodifsn 10505 addmodlteq 10507 uzennn 10545 expaddzaplem 10691 expaddzap 10692 expmulzap 10694 nn0le2msqd 10828 nn0opthlem1d 10829 nn0opthd 10831 nn0opth2d 10832 facdiv 10847 bcp1n 10870 bcn2m1 10878 bcn2p1 10879 omgadd 10911 fihashssdif 10927 hashdifpr 10929 hashxp 10935 zfz1isolemsplit 10947 zfz1isolem1 10949 fsumconst 11636 hash2iun1dif1 11662 binomlem 11665 bcxmas 11671 arisum 11680 arisum2 11681 mertensabs 11719 effsumlt 11874 dvdsexp 12043 nn0ob 12090 divalglemnn 12100 divalgmod 12109 bitsinv1lem 12143 bezoutlemnewy 12188 bezoutlema 12191 bezoutlemb 12192 mulgcd 12208 absmulgcd 12209 mulgcdr 12210 gcddiv 12211 lcmgcd 12271 lcmid 12273 lcm1 12274 3lcm2e6woprm 12279 6lcm4e12 12280 mulgcddvds 12287 qredeu 12290 divgcdcoprm0 12294 divgcdcoprmex 12295 cncongr1 12296 cncongr2 12297 pw2dvdseulemle 12360 phiprmpw 12415 eulerthlema 12423 prmdiveq 12429 odzdvds 12439 powm2modprm 12446 coprimeprodsq 12451 pceulem 12488 pczpre 12491 pcqmul 12497 pcaddlem 12533 pcmpt 12537 pcmpt2 12538 sumhashdc 12541 pcfac 12544 oddprmdvds 12548 mul4sq 12588 4sqlem12 12596 mulgnn0dir 13358 mulgnn0ass 13364 plyaddlem1 15067 plymullem1 15068 dvply1 15085 dvply2g 15086 0sgm 15305 sgmppw 15312 lgslem1 15325 lgsvalmod 15344 gausslemma2dlem6 15392 gausslemma2d 15394 lgseisenlem2 15396 lgseisenlem3 15397 lgsquadlem1 15402 lgsquadlem2 15403 lgsquad2lem2 15407 m1lgs 15410 2lgslem1c 15415 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 2sqlem8 15448 |
| Copyright terms: Public domain | W3C validator |