![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cnd | Unicode version |
Description: A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nn0cnd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | nn0red 9294 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | recnd 8048 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-int 3871 df-inn 8983 df-n0 9241 |
This theorem is referenced by: modsumfzodifsn 10467 addmodlteq 10469 uzennn 10507 expaddzaplem 10653 expaddzap 10654 expmulzap 10656 nn0le2msqd 10790 nn0opthlem1d 10791 nn0opthd 10793 nn0opth2d 10794 facdiv 10809 bcp1n 10832 bcn2m1 10840 bcn2p1 10841 omgadd 10873 fihashssdif 10889 hashdifpr 10891 hashxp 10897 zfz1isolemsplit 10909 zfz1isolem1 10911 fsumconst 11597 hash2iun1dif1 11623 binomlem 11626 bcxmas 11632 arisum 11641 arisum2 11642 mertensabs 11680 effsumlt 11835 dvdsexp 12003 nn0ob 12049 divalglemnn 12059 divalgmod 12068 bezoutlemnewy 12133 bezoutlema 12136 bezoutlemb 12137 mulgcd 12153 absmulgcd 12154 mulgcdr 12155 gcddiv 12156 lcmgcd 12216 lcmid 12218 lcm1 12219 3lcm2e6woprm 12224 6lcm4e12 12225 mulgcddvds 12232 qredeu 12235 divgcdcoprm0 12239 divgcdcoprmex 12240 cncongr1 12241 cncongr2 12242 pw2dvdseulemle 12305 phiprmpw 12360 eulerthlema 12368 prmdiveq 12374 odzdvds 12383 powm2modprm 12390 coprimeprodsq 12395 pceulem 12432 pczpre 12435 pcqmul 12441 pcaddlem 12477 pcmpt 12481 pcmpt2 12482 sumhashdc 12485 pcfac 12488 oddprmdvds 12492 mul4sq 12532 4sqlem12 12540 mulgnn0dir 13222 mulgnn0ass 13228 plyaddlem1 14893 plymullem1 14894 lgslem1 15116 lgsvalmod 15135 gausslemma2dlem6 15183 gausslemma2d 15185 lgseisenlem2 15187 lgseisenlem3 15188 lgsquadlem1 15191 m1lgs 15192 2sqlem8 15210 |
Copyright terms: Public domain | W3C validator |