Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cnd | Unicode version |
Description: A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 |
Ref | Expression |
---|---|
nn0cnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | . . 3 | |
2 | 1 | nn0red 9164 | . 2 |
3 | 2 | recnd 7923 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cc 7747 cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-rnegex 7858 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-int 3824 df-inn 8854 df-n0 9111 |
This theorem is referenced by: modsumfzodifsn 10327 addmodlteq 10329 uzennn 10367 expaddzaplem 10494 expaddzap 10495 expmulzap 10497 nn0le2msqd 10628 nn0opthlem1d 10629 nn0opthd 10631 nn0opth2d 10632 facdiv 10647 bcp1n 10670 bcn2m1 10678 bcn2p1 10679 omgadd 10711 fihashssdif 10727 hashdifpr 10729 hashxp 10735 zfz1isolemsplit 10747 zfz1isolem1 10749 fsumconst 11391 hash2iun1dif1 11417 binomlem 11420 bcxmas 11426 arisum 11435 arisum2 11436 mertensabs 11474 effsumlt 11629 dvdsexp 11795 nn0ob 11841 divalglemnn 11851 divalgmod 11860 bezoutlemnewy 11925 bezoutlema 11928 bezoutlemb 11929 mulgcd 11945 absmulgcd 11946 mulgcdr 11947 gcddiv 11948 lcmgcd 12006 lcmid 12008 lcm1 12009 3lcm2e6woprm 12014 6lcm4e12 12015 mulgcddvds 12022 qredeu 12025 divgcdcoprm0 12029 divgcdcoprmex 12030 cncongr1 12031 cncongr2 12032 pw2dvdseulemle 12095 phiprmpw 12150 eulerthlema 12158 prmdiveq 12164 odzdvds 12173 powm2modprm 12180 coprimeprodsq 12185 pceulem 12222 pczpre 12225 pcqmul 12231 pcaddlem 12266 pcmpt 12269 pcmpt2 12270 sumhashdc 12273 pcfac 12276 oddprmdvds 12280 mul4sq 12320 lgslem1 13501 lgsvalmod 13520 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |