| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfnfiinf | Unicode version | ||
| Description: An element of ℕ∞ which is not finite is infinite. (Contributed by Jim Kingdon, 30-Nov-2025.) |
| Ref | Expression |
|---|---|
| nninfnfiinf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . . 6
| |
| 2 | simplll 533 |
. . . . . . 7
| |
| 3 | simplr 528 |
. . . . . . 7
| |
| 4 | simpr 110 |
. . . . . . 7
| |
| 5 | 2, 3, 4 | nnnninfex 15959 |
. . . . . 6
|
| 6 | 1, 5 | mtand 667 |
. . . . 5
|
| 7 | nninff 7224 |
. . . . . . . . . 10
| |
| 8 | 7 | ad2antrr 488 |
. . . . . . . . 9
|
| 9 | simpr 110 |
. . . . . . . . 9
| |
| 10 | 8, 9 | ffvelcdmd 5716 |
. . . . . . . 8
|
| 11 | df2o3 6516 |
. . . . . . . 8
| |
| 12 | 10, 11 | eleqtrdi 2298 |
. . . . . . 7
|
| 13 | elpri 3656 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 14 |
. . . . . 6
|
| 15 | 14 | orcomd 731 |
. . . . 5
|
| 16 | 6, 15 | ecased 1362 |
. . . 4
|
| 17 | fconstmpt 4722 |
. . . . . . 7
| |
| 18 | 17 | fveq1i 5577 |
. . . . . 6
|
| 19 | 1oex 6510 |
. . . . . . 7
| |
| 20 | 19 | fvconst2 5800 |
. . . . . 6
|
| 21 | 18, 20 | eqtr3id 2252 |
. . . . 5
|
| 22 | 21 | adantl 277 |
. . . 4
|
| 23 | 16, 22 | eqtr4d 2241 |
. . 3
|
| 24 | 23 | ralrimiva 2579 |
. 2
|
| 25 | 7 | ffnd 5426 |
. . . 4
|
| 26 | eqid 2205 |
. . . . 5
| |
| 27 | 19, 26 | fnmpti 5404 |
. . . 4
|
| 28 | eqfnfv 5677 |
. . . 4
| |
| 29 | 25, 27, 28 | sylancl 413 |
. . 3
|
| 30 | 29 | adantr 276 |
. 2
|
| 31 | 24, 30 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1o 6502 df-2o 6503 df-map 6737 df-nninf 7222 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |