Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfnfiinf GIF version

Theorem nninfnfiinf 15756
Description: An element of which is not finite is infinite. (Contributed by Jim Kingdon, 30-Nov-2025.)
Assertion
Ref Expression
nninfnfiinf ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦ 1o))
Distinct variable group:   𝐴,𝑖,𝑛

Proof of Theorem nninfnfiinf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . 6 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
2 simplll 533 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → 𝐴 ∈ ℕ)
3 simplr 528 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → 𝑗 ∈ ω)
4 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → (𝐴𝑗) = ∅)
52, 3, 4nnnninfex 15755 . . . . . 6 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
61, 5mtand 666 . . . . 5 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ¬ (𝐴𝑗) = ∅)
7 nninff 7197 . . . . . . . . . 10 (𝐴 ∈ ℕ𝐴:ω⟶2o)
87ad2antrr 488 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → 𝐴:ω⟶2o)
9 simpr 110 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
108, 9ffvelcdmd 5701 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) ∈ 2o)
11 df2o3 6497 . . . . . . . 8 2o = {∅, 1o}
1210, 11eleqtrdi 2289 . . . . . . 7 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) ∈ {∅, 1o})
13 elpri 3646 . . . . . . 7 ((𝐴𝑗) ∈ {∅, 1o} → ((𝐴𝑗) = ∅ ∨ (𝐴𝑗) = 1o))
1412, 13syl 14 . . . . . 6 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝐴𝑗) = ∅ ∨ (𝐴𝑗) = 1o))
1514orcomd 730 . . . . 5 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝐴𝑗) = 1o ∨ (𝐴𝑗) = ∅))
166, 15ecased 1360 . . . 4 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) = 1o)
17 fconstmpt 4711 . . . . . . 7 (ω × {1o}) = (𝑖 ∈ ω ↦ 1o)
1817fveq1i 5562 . . . . . 6 ((ω × {1o})‘𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)
19 1oex 6491 . . . . . . 7 1o ∈ V
2019fvconst2 5781 . . . . . 6 (𝑗 ∈ ω → ((ω × {1o})‘𝑗) = 1o)
2118, 20eqtr3id 2243 . . . . 5 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
2221adantl 277 . . . 4 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
2316, 22eqtr4d 2232 . . 3 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2423ralrimiva 2570 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
257ffnd 5411 . . . 4 (𝐴 ∈ ℕ𝐴 Fn ω)
26 eqid 2196 . . . . 5 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
2719, 26fnmpti 5389 . . . 4 (𝑖 ∈ ω ↦ 1o) Fn ω
28 eqfnfv 5662 . . . 4 ((𝐴 Fn ω ∧ (𝑖 ∈ ω ↦ 1o) Fn ω) → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
2925, 27, 28sylancl 413 . . 3 (𝐴 ∈ ℕ → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
3029adantr 276 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
3124, 30mpbird 167 1 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  wrex 2476  c0 3451  ifcif 3562  {csn 3623  {cpr 3624  cmpt 4095  ωcom 4627   × cxp 4662   Fn wfn 5254  wf 5255  cfv 5259  1oc1o 6476  2oc2o 6477  xnninf 7194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1o 6483  df-2o 6484  df-map 6718  df-nninf 7195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator