| Step | Hyp | Ref
| Expression |
| 1 | | simplr 528 |
. . . . . 6
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ¬
∃𝑛 ∈ ω
𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| 2 | | simplll 533 |
. . . . . . 7
⊢ ((((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴‘𝑗) = ∅) → 𝐴 ∈
ℕ∞) |
| 3 | | simplr 528 |
. . . . . . 7
⊢ ((((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴‘𝑗) = ∅) → 𝑗 ∈ ω) |
| 4 | | simpr 110 |
. . . . . . 7
⊢ ((((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴‘𝑗) = ∅) → (𝐴‘𝑗) = ∅) |
| 5 | 2, 3, 4 | nnnninfex 15755 |
. . . . . 6
⊢ ((((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴‘𝑗) = ∅) → ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| 6 | 1, 5 | mtand 666 |
. . . . 5
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ¬
(𝐴‘𝑗) = ∅) |
| 7 | | nninff 7197 |
. . . . . . . . . 10
⊢ (𝐴 ∈
ℕ∞ → 𝐴:ω⟶2o) |
| 8 | 7 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → 𝐴:ω⟶2o) |
| 9 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → 𝑗 ∈
ω) |
| 10 | 8, 9 | ffvelcdmd 5701 |
. . . . . . . 8
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴‘𝑗) ∈ 2o) |
| 11 | | df2o3 6497 |
. . . . . . . 8
⊢
2o = {∅, 1o} |
| 12 | 10, 11 | eleqtrdi 2289 |
. . . . . . 7
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴‘𝑗) ∈ {∅,
1o}) |
| 13 | | elpri 3646 |
. . . . . . 7
⊢ ((𝐴‘𝑗) ∈ {∅, 1o} →
((𝐴‘𝑗) = ∅ ∨ (𝐴‘𝑗) = 1o)) |
| 14 | 12, 13 | syl 14 |
. . . . . 6
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝐴‘𝑗) = ∅ ∨ (𝐴‘𝑗) = 1o)) |
| 15 | 14 | orcomd 730 |
. . . . 5
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝐴‘𝑗) = 1o ∨ (𝐴‘𝑗) = ∅)) |
| 16 | 6, 15 | ecased 1360 |
. . . 4
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴‘𝑗) = 1o) |
| 17 | | fconstmpt 4711 |
. . . . . . 7
⊢ (ω
× {1o}) = (𝑖 ∈ ω ↦
1o) |
| 18 | 17 | fveq1i 5562 |
. . . . . 6
⊢ ((ω
× {1o})‘𝑗) = ((𝑖 ∈ ω ↦
1o)‘𝑗) |
| 19 | | 1oex 6491 |
. . . . . . 7
⊢
1o ∈ V |
| 20 | 19 | fvconst2 5781 |
. . . . . 6
⊢ (𝑗 ∈ ω → ((ω
× {1o})‘𝑗) = 1o) |
| 21 | 18, 20 | eqtr3id 2243 |
. . . . 5
⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦
1o)‘𝑗) =
1o) |
| 22 | 21 | adantl 277 |
. . . 4
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦
1o)‘𝑗) =
1o) |
| 23 | 16, 22 | eqtr4d 2232 |
. . 3
⊢ (((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴‘𝑗) = ((𝑖 ∈ ω ↦
1o)‘𝑗)) |
| 24 | 23 | ralrimiva 2570 |
. 2
⊢ ((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) →
∀𝑗 ∈ ω
(𝐴‘𝑗) = ((𝑖 ∈ ω ↦
1o)‘𝑗)) |
| 25 | 7 | ffnd 5411 |
. . . 4
⊢ (𝐴 ∈
ℕ∞ → 𝐴 Fn ω) |
| 26 | | eqid 2196 |
. . . . 5
⊢ (𝑖 ∈ ω ↦
1o) = (𝑖 ∈
ω ↦ 1o) |
| 27 | 19, 26 | fnmpti 5389 |
. . . 4
⊢ (𝑖 ∈ ω ↦
1o) Fn ω |
| 28 | | eqfnfv 5662 |
. . . 4
⊢ ((𝐴 Fn ω ∧ (𝑖 ∈ ω ↦
1o) Fn ω) → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔
∀𝑗 ∈ ω
(𝐴‘𝑗) = ((𝑖 ∈ ω ↦
1o)‘𝑗))) |
| 29 | 25, 27, 28 | sylancl 413 |
. . 3
⊢ (𝐴 ∈
ℕ∞ → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔
∀𝑗 ∈ ω
(𝐴‘𝑗) = ((𝑖 ∈ ω ↦
1o)‘𝑗))) |
| 30 | 29 | adantr 276 |
. 2
⊢ ((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔
∀𝑗 ∈ ω
(𝐴‘𝑗) = ((𝑖 ∈ ω ↦
1o)‘𝑗))) |
| 31 | 24, 30 | mpbird 167 |
1
⊢ ((𝐴 ∈
ℕ∞ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦
1o)) |