Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfnfiinf GIF version

Theorem nninfnfiinf 16389
Description: An element of which is not finite is infinite. (Contributed by Jim Kingdon, 30-Nov-2025.)
Assertion
Ref Expression
nninfnfiinf ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦ 1o))
Distinct variable group:   𝐴,𝑖,𝑛

Proof of Theorem nninfnfiinf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . 6 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
2 simplll 533 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → 𝐴 ∈ ℕ)
3 simplr 528 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → 𝑗 ∈ ω)
4 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → (𝐴𝑗) = ∅)
52, 3, 4nnnninfex 16388 . . . . . 6 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
61, 5mtand 669 . . . . 5 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ¬ (𝐴𝑗) = ∅)
7 nninff 7289 . . . . . . . . . 10 (𝐴 ∈ ℕ𝐴:ω⟶2o)
87ad2antrr 488 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → 𝐴:ω⟶2o)
9 simpr 110 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
108, 9ffvelcdmd 5771 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) ∈ 2o)
11 df2o3 6576 . . . . . . . 8 2o = {∅, 1o}
1210, 11eleqtrdi 2322 . . . . . . 7 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) ∈ {∅, 1o})
13 elpri 3689 . . . . . . 7 ((𝐴𝑗) ∈ {∅, 1o} → ((𝐴𝑗) = ∅ ∨ (𝐴𝑗) = 1o))
1412, 13syl 14 . . . . . 6 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝐴𝑗) = ∅ ∨ (𝐴𝑗) = 1o))
1514orcomd 734 . . . . 5 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝐴𝑗) = 1o ∨ (𝐴𝑗) = ∅))
166, 15ecased 1383 . . . 4 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) = 1o)
17 fconstmpt 4766 . . . . . . 7 (ω × {1o}) = (𝑖 ∈ ω ↦ 1o)
1817fveq1i 5628 . . . . . 6 ((ω × {1o})‘𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)
19 1oex 6570 . . . . . . 7 1o ∈ V
2019fvconst2 5855 . . . . . 6 (𝑗 ∈ ω → ((ω × {1o})‘𝑗) = 1o)
2118, 20eqtr3id 2276 . . . . 5 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
2221adantl 277 . . . 4 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
2316, 22eqtr4d 2265 . . 3 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2423ralrimiva 2603 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
257ffnd 5474 . . . 4 (𝐴 ∈ ℕ𝐴 Fn ω)
26 eqid 2229 . . . . 5 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
2719, 26fnmpti 5452 . . . 4 (𝑖 ∈ ω ↦ 1o) Fn ω
28 eqfnfv 5732 . . . 4 ((𝐴 Fn ω ∧ (𝑖 ∈ ω ↦ 1o) Fn ω) → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
2925, 27, 28sylancl 413 . . 3 (𝐴 ∈ ℕ → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
3029adantr 276 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
3124, 30mpbird 167 1 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wral 2508  wrex 2509  c0 3491  ifcif 3602  {csn 3666  {cpr 3667  cmpt 4145  ωcom 4682   × cxp 4717   Fn wfn 5313  wf 5314  cfv 5318  1oc1o 6555  2oc2o 6556  xnninf 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1o 6562  df-2o 6563  df-map 6797  df-nninf 7287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator