Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfnfiinf GIF version

Theorem nninfnfiinf 15960
Description: An element of which is not finite is infinite. (Contributed by Jim Kingdon, 30-Nov-2025.)
Assertion
Ref Expression
nninfnfiinf ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦ 1o))
Distinct variable group:   𝐴,𝑖,𝑛

Proof of Theorem nninfnfiinf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . 6 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
2 simplll 533 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → 𝐴 ∈ ℕ)
3 simplr 528 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → 𝑗 ∈ ω)
4 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → (𝐴𝑗) = ∅)
52, 3, 4nnnninfex 15959 . . . . . 6 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
61, 5mtand 667 . . . . 5 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ¬ (𝐴𝑗) = ∅)
7 nninff 7224 . . . . . . . . . 10 (𝐴 ∈ ℕ𝐴:ω⟶2o)
87ad2antrr 488 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → 𝐴:ω⟶2o)
9 simpr 110 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
108, 9ffvelcdmd 5716 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) ∈ 2o)
11 df2o3 6516 . . . . . . . 8 2o = {∅, 1o}
1210, 11eleqtrdi 2298 . . . . . . 7 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) ∈ {∅, 1o})
13 elpri 3656 . . . . . . 7 ((𝐴𝑗) ∈ {∅, 1o} → ((𝐴𝑗) = ∅ ∨ (𝐴𝑗) = 1o))
1412, 13syl 14 . . . . . 6 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝐴𝑗) = ∅ ∨ (𝐴𝑗) = 1o))
1514orcomd 731 . . . . 5 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝐴𝑗) = 1o ∨ (𝐴𝑗) = ∅))
166, 15ecased 1362 . . . 4 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) = 1o)
17 fconstmpt 4722 . . . . . . 7 (ω × {1o}) = (𝑖 ∈ ω ↦ 1o)
1817fveq1i 5577 . . . . . 6 ((ω × {1o})‘𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)
19 1oex 6510 . . . . . . 7 1o ∈ V
2019fvconst2 5800 . . . . . 6 (𝑗 ∈ ω → ((ω × {1o})‘𝑗) = 1o)
2118, 20eqtr3id 2252 . . . . 5 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
2221adantl 277 . . . 4 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
2316, 22eqtr4d 2241 . . 3 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2423ralrimiva 2579 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
257ffnd 5426 . . . 4 (𝐴 ∈ ℕ𝐴 Fn ω)
26 eqid 2205 . . . . 5 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
2719, 26fnmpti 5404 . . . 4 (𝑖 ∈ ω ↦ 1o) Fn ω
28 eqfnfv 5677 . . . 4 ((𝐴 Fn ω ∧ (𝑖 ∈ ω ↦ 1o) Fn ω) → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
2925, 27, 28sylancl 413 . . 3 (𝐴 ∈ ℕ → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
3029adantr 276 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
3124, 30mpbird 167 1 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176  wral 2484  wrex 2485  c0 3460  ifcif 3571  {csn 3633  {cpr 3634  cmpt 4105  ωcom 4638   × cxp 4673   Fn wfn 5266  wf 5267  cfv 5271  1oc1o 6495  2oc2o 6496  xnninf 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-map 6737  df-nninf 7222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator