Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfnfiinf GIF version

Theorem nninfnfiinf 16162
Description: An element of which is not finite is infinite. (Contributed by Jim Kingdon, 30-Nov-2025.)
Assertion
Ref Expression
nninfnfiinf ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦ 1o))
Distinct variable group:   𝐴,𝑖,𝑛

Proof of Theorem nninfnfiinf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . 6 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
2 simplll 533 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → 𝐴 ∈ ℕ)
3 simplr 528 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → 𝑗 ∈ ω)
4 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → (𝐴𝑗) = ∅)
52, 3, 4nnnninfex 16161 . . . . . 6 ((((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) ∧ (𝐴𝑗) = ∅) → ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
61, 5mtand 667 . . . . 5 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ¬ (𝐴𝑗) = ∅)
7 nninff 7250 . . . . . . . . . 10 (𝐴 ∈ ℕ𝐴:ω⟶2o)
87ad2antrr 488 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → 𝐴:ω⟶2o)
9 simpr 110 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
108, 9ffvelcdmd 5739 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) ∈ 2o)
11 df2o3 6539 . . . . . . . 8 2o = {∅, 1o}
1210, 11eleqtrdi 2300 . . . . . . 7 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) ∈ {∅, 1o})
13 elpri 3666 . . . . . . 7 ((𝐴𝑗) ∈ {∅, 1o} → ((𝐴𝑗) = ∅ ∨ (𝐴𝑗) = 1o))
1412, 13syl 14 . . . . . 6 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝐴𝑗) = ∅ ∨ (𝐴𝑗) = 1o))
1514orcomd 731 . . . . 5 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝐴𝑗) = 1o ∨ (𝐴𝑗) = ∅))
166, 15ecased 1362 . . . 4 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) = 1o)
17 fconstmpt 4740 . . . . . . 7 (ω × {1o}) = (𝑖 ∈ ω ↦ 1o)
1817fveq1i 5600 . . . . . 6 ((ω × {1o})‘𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)
19 1oex 6533 . . . . . . 7 1o ∈ V
2019fvconst2 5823 . . . . . 6 (𝑗 ∈ ω → ((ω × {1o})‘𝑗) = 1o)
2118, 20eqtr3id 2254 . . . . 5 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
2221adantl 277 . . . 4 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
2316, 22eqtr4d 2243 . . 3 (((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ∧ 𝑗 ∈ ω) → (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2423ralrimiva 2581 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
257ffnd 5446 . . . 4 (𝐴 ∈ ℕ𝐴 Fn ω)
26 eqid 2207 . . . . 5 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
2719, 26fnmpti 5424 . . . 4 (𝑖 ∈ ω ↦ 1o) Fn ω
28 eqfnfv 5700 . . . 4 ((𝐴 Fn ω ∧ (𝑖 ∈ ω ↦ 1o) Fn ω) → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
2925, 27, 28sylancl 413 . . 3 (𝐴 ∈ ℕ → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
3029adantr 276 . 2 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → (𝐴 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐴𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
3124, 30mpbird 167 1 ((𝐴 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ω 𝐴 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → 𝐴 = (𝑖 ∈ ω ↦ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2178  wral 2486  wrex 2487  c0 3468  ifcif 3579  {csn 3643  {cpr 3644  cmpt 4121  ωcom 4656   × cxp 4691   Fn wfn 5285  wf 5286  cfv 5290  1oc1o 6518  2oc2o 6519  xnninf 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1o 6525  df-2o 6526  df-map 6760  df-nninf 7248
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator