ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsgid Unicode version

Theorem nsgid 13421
Description: The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
nsgid.z  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
nsgid  |-  ( G  e.  Grp  ->  B  e.  (NrmSGrp `  G )
)

Proof of Theorem nsgid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgid.z . . 3  |-  B  =  ( Base `  G
)
21subgid 13381 . 2  |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G )
)
3 simp1 999 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  G  e.  Grp )
4 eqid 2196 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
51, 4grpcl 13210 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
6 simp2 1000 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  x  e.  B )
7 eqid 2196 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
81, 7grpsubcl 13282 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  B  /\  x  e.  B )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
93, 5, 6, 8syl3anc 1249 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  B )
1093expb 1206 . . 3  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
1110ralrimivva 2579 . 2  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  B
)
121, 4, 7isnsg3 13413 . 2  |-  ( B  e.  (NrmSGrp `  G
)  <->  ( B  e.  (SubGrp `  G )  /\  A. x  e.  B  A. y  e.  B  ( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  B ) )
132, 11, 12sylanbrc 417 1  |-  ( G  e.  Grp  ->  B  e.  (NrmSGrp `  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   Grpcgrp 13202   -gcsg 13204  SubGrpcsubg 13373  NrmSGrpcnsg 13374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-subg 13376  df-nsg 13377
This theorem is referenced by:  0idnsgd  13422  trivnsgd  13423  1nsgtrivd  13425
  Copyright terms: Public domain W3C validator