ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsgid GIF version

Theorem nsgid 13080
Description: The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
nsgid.z 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
nsgid (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))

Proof of Theorem nsgid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgid.z . . 3 𝐵 = (Base‘𝐺)
21subgid 13040 . 2 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
3 simp1 997 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → 𝐺 ∈ Grp)
4 eqid 2177 . . . . . 6 (+g𝐺) = (+g𝐺)
51, 4grpcl 12890 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
6 simp2 998 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → 𝑥𝐵)
7 eqid 2177 . . . . . 6 (-g𝐺) = (-g𝐺)
81, 7grpsubcl 12955 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝐵𝑥𝐵) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
93, 5, 6, 8syl3anc 1238 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
1093expb 1204 . . 3 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
1110ralrimivva 2559 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵)
121, 4, 7isnsg3 13072 . 2 (𝐵 ∈ (NrmSGrp‘𝐺) ↔ (𝐵 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝐵))
132, 11, 12sylanbrc 417 1 (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978   = wceq 1353  wcel 2148  wral 2455  cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  Grpcgrp 12882  -gcsg 12884  SubGrpcsubg 13032  NrmSGrpcnsg 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887  df-subg 13035  df-nsg 13036
This theorem is referenced by:  0idnsgd  13081  trivnsgd  13082  1nsgtrivd  13084
  Copyright terms: Public domain W3C validator