ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemfm Unicode version

Theorem cvgratnnlemfm 11419
Description: Lemma for cvgratnn 11421. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnnlemfm.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
cvgratnnlemfm  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
Distinct variable groups:    A, k    k, F    ph, k    k, M

Proof of Theorem cvgratnnlemfm
StepHypRef Expression
1 fveq2 5467 . . . . 5  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
21eleq1d 2226 . . . 4  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
3 cvgratnn.6 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
43ralrimiva 2530 . . . 4  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
5 cvgratnnlemfm.m . . . 4  |-  ( ph  ->  M  e.  NN )
62, 4, 5rspcdva 2821 . . 3  |-  ( ph  ->  ( F `  M
)  e.  CC )
76abscld 11074 . 2  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
8 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
9 cvgratnn.gt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <  A )
108, 9gt0ap0d 8498 . . . . . . . . . 10  |-  ( ph  ->  A #  0 )
118, 10rerecclapd 8700 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
12 1red 7887 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR )
1311, 12resubcld 8250 . . . . . . . 8  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR )
14 cvgratnn.4 . . . . . . . . . 10  |-  ( ph  ->  A  <  1 )
158, 9elrpd 9593 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
1615reclt1d 9610 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
1714, 16mpbid 146 . . . . . . . . 9  |-  ( ph  ->  1  <  ( 1  /  A ) )
1812, 11posdifd 8401 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  (
1  /  A )  <->  0  <  ( ( 1  /  A )  -  1 ) ) )
1917, 18mpbid 146 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( 1  /  A )  -  1 ) )
2013, 19elrpd 9593 . . . . . . 7  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
2120rpreccld 9607 . . . . . 6  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR+ )
2221, 15rpdivcld 9614 . . . . 5  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR+ )
2322rpred 9596 . . . 4  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR )
24 fveq2 5467 . . . . . . 7  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
2524eleq1d 2226 . . . . . 6  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
26 1nn 8838 . . . . . . 7  |-  1  e.  NN
2726a1i 9 . . . . . 6  |-  ( ph  ->  1  e.  NN )
2825, 4, 27rspcdva 2821 . . . . 5  |-  ( ph  ->  ( F `  1
)  e.  CC )
2928abscld 11074 . . . 4  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
3023, 29remulcld 7902 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  ( abs `  ( F ` 
1 ) ) )  e.  RR )
3130, 5nndivred 8877 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  e.  RR )
32 peano2re 8005 . . . . 5  |-  ( ( abs `  ( F `
 1 ) )  e.  RR  ->  (
( abs `  ( F `  1 )
)  +  1 )  e.  RR )
3329, 32syl 14 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  +  1 )  e.  RR )
3423, 33remulcld 7902 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR )
3534, 5nndivred 8877 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) )  /  M )  e.  RR )
36 nnm1nn0 9125 . . . . . 6  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
375, 36syl 14 . . . . 5  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
388, 37reexpcld 10561 . . . 4  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  e.  RR )
3929, 38remulcld 7902 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  e.  RR )
40 cvgratnn.7 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
418, 14, 9, 3, 40, 5cvgratnnlemnexp 11414 . . 3  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ ( M  -  1 ) ) ) )
4223, 5nndivred 8877 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  /  M
)  e.  RR )
4328absge0d 11077 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  ( F `  1
) ) )
448recnd 7900 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
455nnzd 9279 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
4644, 10, 45expm1apd 10554 . . . . . . . 8  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  =  ( ( A ^ M )  /  A ) )
475nnnn0d 9137 . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN0 )
488, 47reexpcld 10561 . . . . . . . . 9  |-  ( ph  ->  ( A ^ M
)  e.  RR )
4921rpred 9596 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR )
5049, 5nndivred 8877 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  M
)  e.  RR )
518, 14, 9, 5cvgratnnlembern 11413 . . . . . . . . 9  |-  ( ph  ->  ( A ^ M
)  <  ( (
1  /  ( ( 1  /  A )  -  1 ) )  /  M ) )
5248, 50, 15, 51ltdiv1dd 9654 . . . . . . . 8  |-  ( ph  ->  ( ( A ^ M )  /  A
)  <  ( (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  M )  /  A ) )
5346, 52eqbrtrd 3986 . . . . . . 7  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  M )  /  A ) )
5449recnd 7900 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  CC )
555nncnd 8841 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
565nnap0d 8873 . . . . . . . 8  |-  ( ph  ->  M #  0 )
5754, 55, 44, 56, 10divdiv32apd 8683 . . . . . . 7  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  M )  /  A
)  =  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
5853, 57breqtrd 3990 . . . . . 6  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
5938, 42, 58ltled 7988 . . . . 5  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <_  ( (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
6038, 42, 29, 43, 59lemul2ad 8805 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  <_  ( ( abs `  ( F `  1
) )  x.  (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  /  M ) ) )
6129recnd 7900 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  CC )
6223recnd 7900 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  CC )
6361, 62mulcomd 7893 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A ) )  =  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) ) )
6463oveq1d 5836 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( F `  1
) )  x.  (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A ) )  /  M )  =  ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
) )
6561, 62, 55, 56divassapd 8693 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( F `  1
) )  x.  (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A ) )  /  M )  =  ( ( abs `  ( F `  1
) )  x.  (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  /  M ) ) )
6664, 65eqtr3d 2192 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  =  ( ( abs `  ( F `
 1 ) )  x.  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  /  M ) ) )
6760, 66breqtrrd 3992 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  <_  ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
) )
687, 39, 31, 41, 67letrd 7993 . 2  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( abs `  ( F `  1
) ) )  /  M ) )
695nnrpd 9594 . . 3  |-  ( ph  ->  M  e.  RR+ )
7029ltp1d 8795 . . . 4  |-  ( ph  ->  ( abs `  ( F `  1 )
)  <  ( ( abs `  ( F ` 
1 ) )  +  1 ) )
7129, 33, 22, 70ltmul2dd 9653 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  ( abs `  ( F ` 
1 ) ) )  <  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) ) )
7230, 34, 69, 71ltdiv1dd 9654 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
737, 31, 35, 68, 72lelttrd 7994 1  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   class class class wbr 3965   ` cfv 5169  (class class class)co 5821   CCcc 7724   RRcr 7725   0cc0 7726   1c1 7727    + caddc 7729    x. cmul 7731    < clt 7906    <_ cle 7907    - cmin 8040    / cdiv 8539   NNcn 8827   NN0cn0 9084   ^cexp 10411   abscabs 10890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-rp 9554  df-seqfrec 10338  df-exp 10412  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892
This theorem is referenced by:  cvgratnnlemrate  11420
  Copyright terms: Public domain W3C validator