ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemfm Unicode version

Theorem cvgratnnlemfm 11672
Description: Lemma for cvgratnn 11674. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnnlemfm.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
cvgratnnlemfm  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
Distinct variable groups:    A, k    k, F    ph, k    k, M

Proof of Theorem cvgratnnlemfm
StepHypRef Expression
1 fveq2 5554 . . . . 5  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
21eleq1d 2262 . . . 4  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
3 cvgratnn.6 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
43ralrimiva 2567 . . . 4  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
5 cvgratnnlemfm.m . . . 4  |-  ( ph  ->  M  e.  NN )
62, 4, 5rspcdva 2869 . . 3  |-  ( ph  ->  ( F `  M
)  e.  CC )
76abscld 11325 . 2  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
8 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
9 cvgratnn.gt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <  A )
108, 9gt0ap0d 8648 . . . . . . . . . 10  |-  ( ph  ->  A #  0 )
118, 10rerecclapd 8853 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
12 1red 8034 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR )
1311, 12resubcld 8400 . . . . . . . 8  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR )
14 cvgratnn.4 . . . . . . . . . 10  |-  ( ph  ->  A  <  1 )
158, 9elrpd 9759 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
1615reclt1d 9776 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
1714, 16mpbid 147 . . . . . . . . 9  |-  ( ph  ->  1  <  ( 1  /  A ) )
1812, 11posdifd 8551 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  (
1  /  A )  <->  0  <  ( ( 1  /  A )  -  1 ) ) )
1917, 18mpbid 147 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( 1  /  A )  -  1 ) )
2013, 19elrpd 9759 . . . . . . 7  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
2120rpreccld 9773 . . . . . 6  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR+ )
2221, 15rpdivcld 9780 . . . . 5  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR+ )
2322rpred 9762 . . . 4  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR )
24 fveq2 5554 . . . . . . 7  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
2524eleq1d 2262 . . . . . 6  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
26 1nn 8993 . . . . . . 7  |-  1  e.  NN
2726a1i 9 . . . . . 6  |-  ( ph  ->  1  e.  NN )
2825, 4, 27rspcdva 2869 . . . . 5  |-  ( ph  ->  ( F `  1
)  e.  CC )
2928abscld 11325 . . . 4  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
3023, 29remulcld 8050 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  ( abs `  ( F ` 
1 ) ) )  e.  RR )
3130, 5nndivred 9032 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  e.  RR )
32 peano2re 8155 . . . . 5  |-  ( ( abs `  ( F `
 1 ) )  e.  RR  ->  (
( abs `  ( F `  1 )
)  +  1 )  e.  RR )
3329, 32syl 14 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  +  1 )  e.  RR )
3423, 33remulcld 8050 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR )
3534, 5nndivred 9032 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) )  /  M )  e.  RR )
36 nnm1nn0 9281 . . . . . 6  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
375, 36syl 14 . . . . 5  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
388, 37reexpcld 10761 . . . 4  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  e.  RR )
3929, 38remulcld 8050 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  e.  RR )
40 cvgratnn.7 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
418, 14, 9, 3, 40, 5cvgratnnlemnexp 11667 . . 3  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ ( M  -  1 ) ) ) )
4223, 5nndivred 9032 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  /  M
)  e.  RR )
4328absge0d 11328 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  ( F `  1
) ) )
448recnd 8048 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
455nnzd 9438 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
4644, 10, 45expm1apd 10754 . . . . . . . 8  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  =  ( ( A ^ M )  /  A ) )
475nnnn0d 9293 . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN0 )
488, 47reexpcld 10761 . . . . . . . . 9  |-  ( ph  ->  ( A ^ M
)  e.  RR )
4921rpred 9762 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR )
5049, 5nndivred 9032 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  M
)  e.  RR )
518, 14, 9, 5cvgratnnlembern 11666 . . . . . . . . 9  |-  ( ph  ->  ( A ^ M
)  <  ( (
1  /  ( ( 1  /  A )  -  1 ) )  /  M ) )
5248, 50, 15, 51ltdiv1dd 9820 . . . . . . . 8  |-  ( ph  ->  ( ( A ^ M )  /  A
)  <  ( (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  M )  /  A ) )
5346, 52eqbrtrd 4051 . . . . . . 7  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  M )  /  A ) )
5449recnd 8048 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  CC )
555nncnd 8996 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
565nnap0d 9028 . . . . . . . 8  |-  ( ph  ->  M #  0 )
5754, 55, 44, 56, 10divdiv32apd 8835 . . . . . . 7  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  M )  /  A
)  =  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
5853, 57breqtrd 4055 . . . . . 6  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
5938, 42, 58ltled 8138 . . . . 5  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <_  ( (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
6038, 42, 29, 43, 59lemul2ad 8959 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  <_  ( ( abs `  ( F `  1
) )  x.  (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  /  M ) ) )
6129recnd 8048 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  CC )
6223recnd 8048 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  CC )
6361, 62mulcomd 8041 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A ) )  =  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) ) )
6463oveq1d 5933 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( F `  1
) )  x.  (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A ) )  /  M )  =  ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
) )
6561, 62, 55, 56divassapd 8845 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( F `  1
) )  x.  (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A ) )  /  M )  =  ( ( abs `  ( F `  1
) )  x.  (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  /  M ) ) )
6664, 65eqtr3d 2228 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  =  ( ( abs `  ( F `
 1 ) )  x.  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  /  M ) ) )
6760, 66breqtrrd 4057 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  <_  ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
) )
687, 39, 31, 41, 67letrd 8143 . 2  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( abs `  ( F `  1
) ) )  /  M ) )
695nnrpd 9760 . . 3  |-  ( ph  ->  M  e.  RR+ )
7029ltp1d 8949 . . . 4  |-  ( ph  ->  ( abs `  ( F `  1 )
)  <  ( ( abs `  ( F ` 
1 ) )  +  1 ) )
7129, 33, 22, 70ltmul2dd 9819 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  ( abs `  ( F ` 
1 ) ) )  <  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) ) )
7230, 34, 69, 71ltdiv1dd 9820 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
737, 31, 35, 68, 72lelttrd 8144 1  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190    / cdiv 8691   NNcn 8982   NN0cn0 9240   ^cexp 10609   abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  cvgratnnlemrate  11673
  Copyright terms: Public domain W3C validator