ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemfm Unicode version

Theorem cvgratnnlemfm 10919
Description: Lemma for cvgratnn 10921. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnnlemfm.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
cvgratnnlemfm  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
Distinct variable groups:    A, k    k, F    ph, k    k, M

Proof of Theorem cvgratnnlemfm
StepHypRef Expression
1 fveq2 5305 . . . . 5  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
21eleq1d 2156 . . . 4  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
3 cvgratnn.6 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
43ralrimiva 2446 . . . 4  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
5 cvgratnnlemfm.m . . . 4  |-  ( ph  ->  M  e.  NN )
62, 4, 5rspcdva 2727 . . 3  |-  ( ph  ->  ( F `  M
)  e.  CC )
76abscld 10610 . 2  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
8 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
9 cvgratnn.gt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <  A )
108, 9gt0ap0d 8103 . . . . . . . . . 10  |-  ( ph  ->  A #  0 )
118, 10rerecclapd 8298 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
12 1red 7501 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR )
1311, 12resubcld 7857 . . . . . . . 8  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR )
14 cvgratnn.4 . . . . . . . . . 10  |-  ( ph  ->  A  <  1 )
158, 9elrpd 9169 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
1615reclt1d 9185 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
1714, 16mpbid 145 . . . . . . . . 9  |-  ( ph  ->  1  <  ( 1  /  A ) )
1812, 11posdifd 8007 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  (
1  /  A )  <->  0  <  ( ( 1  /  A )  -  1 ) ) )
1917, 18mpbid 145 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( 1  /  A )  -  1 ) )
2013, 19elrpd 9169 . . . . . . 7  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
2120rpreccld 9182 . . . . . 6  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR+ )
2221, 15rpdivcld 9189 . . . . 5  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR+ )
2322rpred 9171 . . . 4  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR )
24 fveq2 5305 . . . . . . 7  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
2524eleq1d 2156 . . . . . 6  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
26 1nn 8431 . . . . . . 7  |-  1  e.  NN
2726a1i 9 . . . . . 6  |-  ( ph  ->  1  e.  NN )
2825, 4, 27rspcdva 2727 . . . . 5  |-  ( ph  ->  ( F `  1
)  e.  CC )
2928abscld 10610 . . . 4  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
3023, 29remulcld 7516 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  ( abs `  ( F ` 
1 ) ) )  e.  RR )
3130, 5nndivred 8470 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  e.  RR )
32 peano2re 7616 . . . . 5  |-  ( ( abs `  ( F `
 1 ) )  e.  RR  ->  (
( abs `  ( F `  1 )
)  +  1 )  e.  RR )
3329, 32syl 14 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  +  1 )  e.  RR )
3423, 33remulcld 7516 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR )
3534, 5nndivred 8470 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) )  /  M )  e.  RR )
36 nnm1nn0 8712 . . . . . 6  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
375, 36syl 14 . . . . 5  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
388, 37reexpcld 10099 . . . 4  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  e.  RR )
3929, 38remulcld 7516 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  e.  RR )
40 cvgratnn.7 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
418, 14, 9, 3, 40, 5cvgratnnlemnexp 10914 . . 3  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ ( M  -  1 ) ) ) )
4223, 5nndivred 8470 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  /  M
)  e.  RR )
4328absge0d 10613 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  ( F `  1
) ) )
448recnd 7514 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
455nnzd 8865 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
4644, 10, 45expm1apd 10092 . . . . . . . 8  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  =  ( ( A ^ M )  /  A ) )
475nnnn0d 8724 . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN0 )
488, 47reexpcld 10099 . . . . . . . . 9  |-  ( ph  ->  ( A ^ M
)  e.  RR )
4921rpred 9171 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR )
5049, 5nndivred 8470 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  M
)  e.  RR )
518, 14, 9, 5cvgratnnlembern 10913 . . . . . . . . 9  |-  ( ph  ->  ( A ^ M
)  <  ( (
1  /  ( ( 1  /  A )  -  1 ) )  /  M ) )
5248, 50, 15, 51ltdiv1dd 9229 . . . . . . . 8  |-  ( ph  ->  ( ( A ^ M )  /  A
)  <  ( (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  M )  /  A ) )
5346, 52eqbrtrd 3865 . . . . . . 7  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  M )  /  A ) )
5449recnd 7514 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  CC )
555nncnd 8434 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
565nnap0d 8466 . . . . . . . 8  |-  ( ph  ->  M #  0 )
5754, 55, 44, 56, 10divdiv32apd 8281 . . . . . . 7  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  M )  /  A
)  =  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
5853, 57breqtrd 3869 . . . . . 6  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
5938, 42, 58ltled 7600 . . . . 5  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <_  ( (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
6038, 42, 29, 43, 59lemul2ad 8399 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  <_  ( ( abs `  ( F `  1
) )  x.  (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  /  M ) ) )
6129recnd 7514 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  CC )
6223recnd 7514 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  CC )
6361, 62mulcomd 7507 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A ) )  =  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) ) )
6463oveq1d 5667 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( F `  1
) )  x.  (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A ) )  /  M )  =  ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
) )
6561, 62, 55, 56divassapd 8291 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( F `  1
) )  x.  (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A ) )  /  M )  =  ( ( abs `  ( F `  1
) )  x.  (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  /  M ) ) )
6664, 65eqtr3d 2122 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  =  ( ( abs `  ( F `
 1 ) )  x.  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  /  M ) ) )
6760, 66breqtrrd 3871 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  <_  ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
) )
687, 39, 31, 41, 67letrd 7605 . 2  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( abs `  ( F `  1
) ) )  /  M ) )
695nnrpd 9170 . . 3  |-  ( ph  ->  M  e.  RR+ )
7029ltp1d 8389 . . . 4  |-  ( ph  ->  ( abs `  ( F `  1 )
)  <  ( ( abs `  ( F ` 
1 ) )  +  1 ) )
7129, 33, 22, 70ltmul2dd 9228 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  ( abs `  ( F ` 
1 ) ) )  <  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) ) )
7230, 34, 69, 71ltdiv1dd 9229 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
737, 31, 35, 68, 72lelttrd 7606 1  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   class class class wbr 3845   ` cfv 5015  (class class class)co 5652   CCcc 7346   RRcr 7347   0cc0 7348   1c1 7349    + caddc 7351    x. cmul 7353    < clt 7520    <_ cle 7521    - cmin 7651    / cdiv 8137   NNcn 8420   NN0cn0 8671   ^cexp 9950   abscabs 10426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461  ax-arch 7462  ax-caucvg 7463
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-2 8479  df-3 8480  df-4 8481  df-n0 8672  df-z 8749  df-uz 9018  df-rp 9133  df-iseq 9849  df-seq3 9850  df-exp 9951  df-cj 10272  df-re 10273  df-im 10274  df-rsqrt 10427  df-abs 10428
This theorem is referenced by:  cvgratnnlemrate  10920
  Copyright terms: Public domain W3C validator