ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemfm Unicode version

Theorem cvgratnnlemfm 11521
Description: Lemma for cvgratnn 11523. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnnlemfm.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
cvgratnnlemfm  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
Distinct variable groups:    A, k    k, F    ph, k    k, M

Proof of Theorem cvgratnnlemfm
StepHypRef Expression
1 fveq2 5511 . . . . 5  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
21eleq1d 2246 . . . 4  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
3 cvgratnn.6 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
43ralrimiva 2550 . . . 4  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
5 cvgratnnlemfm.m . . . 4  |-  ( ph  ->  M  e.  NN )
62, 4, 5rspcdva 2846 . . 3  |-  ( ph  ->  ( F `  M
)  e.  CC )
76abscld 11174 . 2  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
8 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
9 cvgratnn.gt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <  A )
108, 9gt0ap0d 8576 . . . . . . . . . 10  |-  ( ph  ->  A #  0 )
118, 10rerecclapd 8780 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
12 1red 7963 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR )
1311, 12resubcld 8328 . . . . . . . 8  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR )
14 cvgratnn.4 . . . . . . . . . 10  |-  ( ph  ->  A  <  1 )
158, 9elrpd 9680 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
1615reclt1d 9697 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
1714, 16mpbid 147 . . . . . . . . 9  |-  ( ph  ->  1  <  ( 1  /  A ) )
1812, 11posdifd 8479 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  (
1  /  A )  <->  0  <  ( ( 1  /  A )  -  1 ) ) )
1917, 18mpbid 147 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( 1  /  A )  -  1 ) )
2013, 19elrpd 9680 . . . . . . 7  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
2120rpreccld 9694 . . . . . 6  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR+ )
2221, 15rpdivcld 9701 . . . . 5  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR+ )
2322rpred 9683 . . . 4  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR )
24 fveq2 5511 . . . . . . 7  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
2524eleq1d 2246 . . . . . 6  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
26 1nn 8919 . . . . . . 7  |-  1  e.  NN
2726a1i 9 . . . . . 6  |-  ( ph  ->  1  e.  NN )
2825, 4, 27rspcdva 2846 . . . . 5  |-  ( ph  ->  ( F `  1
)  e.  CC )
2928abscld 11174 . . . 4  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
3023, 29remulcld 7978 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  ( abs `  ( F ` 
1 ) ) )  e.  RR )
3130, 5nndivred 8958 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  e.  RR )
32 peano2re 8083 . . . . 5  |-  ( ( abs `  ( F `
 1 ) )  e.  RR  ->  (
( abs `  ( F `  1 )
)  +  1 )  e.  RR )
3329, 32syl 14 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  +  1 )  e.  RR )
3423, 33remulcld 7978 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR )
3534, 5nndivred 8958 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) )  /  M )  e.  RR )
36 nnm1nn0 9206 . . . . . 6  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
375, 36syl 14 . . . . 5  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
388, 37reexpcld 10656 . . . 4  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  e.  RR )
3929, 38remulcld 7978 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  e.  RR )
40 cvgratnn.7 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
418, 14, 9, 3, 40, 5cvgratnnlemnexp 11516 . . 3  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ ( M  -  1 ) ) ) )
4223, 5nndivred 8958 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  /  M
)  e.  RR )
4328absge0d 11177 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  ( F `  1
) ) )
448recnd 7976 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
455nnzd 9363 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
4644, 10, 45expm1apd 10649 . . . . . . . 8  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  =  ( ( A ^ M )  /  A ) )
475nnnn0d 9218 . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN0 )
488, 47reexpcld 10656 . . . . . . . . 9  |-  ( ph  ->  ( A ^ M
)  e.  RR )
4921rpred 9683 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR )
5049, 5nndivred 8958 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  M
)  e.  RR )
518, 14, 9, 5cvgratnnlembern 11515 . . . . . . . . 9  |-  ( ph  ->  ( A ^ M
)  <  ( (
1  /  ( ( 1  /  A )  -  1 ) )  /  M ) )
5248, 50, 15, 51ltdiv1dd 9741 . . . . . . . 8  |-  ( ph  ->  ( ( A ^ M )  /  A
)  <  ( (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  M )  /  A ) )
5346, 52eqbrtrd 4022 . . . . . . 7  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  M )  /  A ) )
5449recnd 7976 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  CC )
555nncnd 8922 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
565nnap0d 8954 . . . . . . . 8  |-  ( ph  ->  M #  0 )
5754, 55, 44, 56, 10divdiv32apd 8762 . . . . . . 7  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  M )  /  A
)  =  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
5853, 57breqtrd 4026 . . . . . 6  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <  ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
5938, 42, 58ltled 8066 . . . . 5  |-  ( ph  ->  ( A ^ ( M  -  1 ) )  <_  ( (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  /  M ) )
6038, 42, 29, 43, 59lemul2ad 8886 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  <_  ( ( abs `  ( F `  1
) )  x.  (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  /  M ) ) )
6129recnd 7976 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  CC )
6223recnd 7976 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  CC )
6361, 62mulcomd 7969 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A ) )  =  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) ) )
6463oveq1d 5884 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( F `  1
) )  x.  (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A ) )  /  M )  =  ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
) )
6561, 62, 55, 56divassapd 8772 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( F `  1
) )  x.  (
( 1  /  (
( 1  /  A
)  -  1 ) )  /  A ) )  /  M )  =  ( ( abs `  ( F `  1
) )  x.  (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  /  M ) ) )
6664, 65eqtr3d 2212 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  =  ( ( abs `  ( F `
 1 ) )  x.  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  /  M ) ) )
6760, 66breqtrrd 4028 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( M  - 
1 ) ) )  <_  ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
) )
687, 39, 31, 41, 67letrd 8071 . 2  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( abs `  ( F `  1
) ) )  /  M ) )
695nnrpd 9681 . . 3  |-  ( ph  ->  M  e.  RR+ )
7029ltp1d 8876 . . . 4  |-  ( ph  ->  ( abs `  ( F `  1 )
)  <  ( ( abs `  ( F ` 
1 ) )  +  1 ) )
7129, 33, 22, 70ltmul2dd 9740 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  ( abs `  ( F ` 
1 ) ) )  <  ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) ) )
7230, 34, 69, 71ltdiv1dd 9741 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( abs `  ( F `  1 )
) )  /  M
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
737, 31, 35, 68, 72lelttrd 8072 1  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118    / cdiv 8618   NNcn 8908   NN0cn0 9165   ^cexp 10505   abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  cvgratnnlemrate  11522
  Copyright terms: Public domain W3C validator