ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ubmelm1fzo Unicode version

Theorem ubmelm1fzo 9691
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
ubmelm1fzo  |-  ( K  e.  ( 0..^ N )  ->  ( ( N  -  K )  -  1 )  e.  ( 0..^ N ) )

Proof of Theorem ubmelm1fzo
StepHypRef Expression
1 elfzo0 9647 . 2  |-  ( K  e.  ( 0..^ N )  <->  ( K  e. 
NN0  /\  N  e.  NN  /\  K  <  N
) )
2 nnz 8823 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
32adantr 271 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  NN0 )  ->  N  e.  ZZ )
4 nn0z 8824 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  ZZ )
54adantl 272 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  NN0 )  ->  K  e.  ZZ )
63, 5zsubcld 8927 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  NN0 )  -> 
( N  -  K
)  e.  ZZ )
76ancoms 265 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( N  -  K
)  e.  ZZ )
8 peano2zm 8842 . . . . . 6  |-  ( ( N  -  K )  e.  ZZ  ->  (
( N  -  K
)  -  1 )  e.  ZZ )
97, 8syl 14 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( N  -  K )  -  1 )  e.  ZZ )
1093adant3 964 . . . 4  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( N  -  K
)  -  1 )  e.  ZZ )
11 simp3 946 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  K  <  N )
124, 2anim12i 332 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
13123adant3 964 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
14 znnsub 8855 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  N  <->  ( N  -  K )  e.  NN ) )
1513, 14syl 14 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  ( K  <  N  <->  ( N  -  K )  e.  NN ) )
1611, 15mpbid 146 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  ( N  -  K )  e.  NN )
17 nnm1ge0 8886 . . . . 5  |-  ( ( N  -  K )  e.  NN  ->  0  <_  ( ( N  -  K )  -  1 ) )
1816, 17syl 14 . . . 4  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  0  <_  ( ( N  -  K )  -  1 ) )
19 elnn0z 8817 . . . 4  |-  ( ( ( N  -  K
)  -  1 )  e.  NN0  <->  ( ( ( N  -  K )  -  1 )  e.  ZZ  /\  0  <_ 
( ( N  -  K )  -  1 ) ) )
2010, 18, 19sylanbrc 409 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( N  -  K
)  -  1 )  e.  NN0 )
21 simp2 945 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  N  e.  NN )
22 nncn 8484 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
2322adantl 272 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  N  e.  CC )
24 nn0cn 8737 . . . . . . 7  |-  ( K  e.  NN0  ->  K  e.  CC )
2524adantr 271 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  K  e.  CC )
26 1cnd 7558 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  1  e.  CC )
2723, 25, 26subsub4d 7878 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( N  -  K )  -  1 )  =  ( N  -  ( K  + 
1 ) ) )
28 nn0p1gt0 8756 . . . . . . 7  |-  ( K  e.  NN0  ->  0  < 
( K  +  1 ) )
2928adantr 271 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  0  <  ( K  +  1 ) )
30 nn0re 8736 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  RR )
31 peano2re 7672 . . . . . . . 8  |-  ( K  e.  RR  ->  ( K  +  1 )  e.  RR )
3230, 31syl 14 . . . . . . 7  |-  ( K  e.  NN0  ->  ( K  +  1 )  e.  RR )
33 nnre 8483 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR )
34 ltsubpos 7986 . . . . . . 7  |-  ( ( ( K  +  1 )  e.  RR  /\  N  e.  RR )  ->  ( 0  <  ( K  +  1 )  <-> 
( N  -  ( K  +  1 ) )  <  N ) )
3532, 33, 34syl2an 284 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( 0  <  ( K  +  1 )  <-> 
( N  -  ( K  +  1 ) )  <  N ) )
3629, 35mpbid 146 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( N  -  ( K  +  1 ) )  <  N )
3727, 36eqbrtrd 3871 . . . 4  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( N  -  K )  -  1 )  <  N )
38373adant3 964 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( N  -  K
)  -  1 )  <  N )
39 elfzo0 9647 . . 3  |-  ( ( ( N  -  K
)  -  1 )  e.  ( 0..^ N )  <->  ( ( ( N  -  K )  -  1 )  e. 
NN0  /\  N  e.  NN  /\  ( ( N  -  K )  - 
1 )  <  N
) )
4020, 21, 38, 39syl3anbrc 1128 . 2  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( N  -  K
)  -  1 )  e.  ( 0..^ N ) )
411, 40sylbi 120 1  |-  ( K  e.  ( 0..^ N )  ->  ( ( N  -  K )  -  1 )  e.  ( 0..^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 925    e. wcel 1439   class class class wbr 3851  (class class class)co 5666   CCcc 7402   RRcr 7403   0cc0 7404   1c1 7405    + caddc 7407    < clt 7576    <_ cle 7577    - cmin 7707   NNcn 8476   NN0cn0 8727   ZZcz 8804  ..^cfzo 9607
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-ltadd 7515
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-inn 8477  df-n0 8728  df-z 8805  df-uz 9074  df-fz 9479  df-fzo 9608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator