ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ubmelm1fzo Unicode version

Theorem ubmelm1fzo 10003
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
ubmelm1fzo  |-  ( K  e.  ( 0..^ N )  ->  ( ( N  -  K )  -  1 )  e.  ( 0..^ N ) )

Proof of Theorem ubmelm1fzo
StepHypRef Expression
1 elfzo0 9959 . 2  |-  ( K  e.  ( 0..^ N )  <->  ( K  e. 
NN0  /\  N  e.  NN  /\  K  <  N
) )
2 nnz 9073 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
32adantr 274 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  NN0 )  ->  N  e.  ZZ )
4 nn0z 9074 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  ZZ )
54adantl 275 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  NN0 )  ->  K  e.  ZZ )
63, 5zsubcld 9178 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  NN0 )  -> 
( N  -  K
)  e.  ZZ )
76ancoms 266 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( N  -  K
)  e.  ZZ )
8 peano2zm 9092 . . . . . 6  |-  ( ( N  -  K )  e.  ZZ  ->  (
( N  -  K
)  -  1 )  e.  ZZ )
97, 8syl 14 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( N  -  K )  -  1 )  e.  ZZ )
1093adant3 1001 . . . 4  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( N  -  K
)  -  1 )  e.  ZZ )
11 simp3 983 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  K  <  N )
124, 2anim12i 336 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
13123adant3 1001 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
14 znnsub 9105 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  N  <->  ( N  -  K )  e.  NN ) )
1513, 14syl 14 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  ( K  <  N  <->  ( N  -  K )  e.  NN ) )
1611, 15mpbid 146 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  ( N  -  K )  e.  NN )
17 nnm1ge0 9137 . . . . 5  |-  ( ( N  -  K )  e.  NN  ->  0  <_  ( ( N  -  K )  -  1 ) )
1816, 17syl 14 . . . 4  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  0  <_  ( ( N  -  K )  -  1 ) )
19 elnn0z 9067 . . . 4  |-  ( ( ( N  -  K
)  -  1 )  e.  NN0  <->  ( ( ( N  -  K )  -  1 )  e.  ZZ  /\  0  <_ 
( ( N  -  K )  -  1 ) ) )
2010, 18, 19sylanbrc 413 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( N  -  K
)  -  1 )  e.  NN0 )
21 simp2 982 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  N  e.  NN )
22 nncn 8728 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
2322adantl 275 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  N  e.  CC )
24 nn0cn 8987 . . . . . . 7  |-  ( K  e.  NN0  ->  K  e.  CC )
2524adantr 274 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  K  e.  CC )
26 1cnd 7782 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  1  e.  CC )
2723, 25, 26subsub4d 8104 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( N  -  K )  -  1 )  =  ( N  -  ( K  + 
1 ) ) )
28 nn0p1gt0 9006 . . . . . . 7  |-  ( K  e.  NN0  ->  0  < 
( K  +  1 ) )
2928adantr 274 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  0  <  ( K  +  1 ) )
30 nn0re 8986 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  RR )
31 peano2re 7898 . . . . . . . 8  |-  ( K  e.  RR  ->  ( K  +  1 )  e.  RR )
3230, 31syl 14 . . . . . . 7  |-  ( K  e.  NN0  ->  ( K  +  1 )  e.  RR )
33 nnre 8727 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR )
34 ltsubpos 8216 . . . . . . 7  |-  ( ( ( K  +  1 )  e.  RR  /\  N  e.  RR )  ->  ( 0  <  ( K  +  1 )  <-> 
( N  -  ( K  +  1 ) )  <  N ) )
3532, 33, 34syl2an 287 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( 0  <  ( K  +  1 )  <-> 
( N  -  ( K  +  1 ) )  <  N ) )
3629, 35mpbid 146 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( N  -  ( K  +  1 ) )  <  N )
3727, 36eqbrtrd 3950 . . . 4  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( N  -  K )  -  1 )  <  N )
38373adant3 1001 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( N  -  K
)  -  1 )  <  N )
39 elfzo0 9959 . . 3  |-  ( ( ( N  -  K
)  -  1 )  e.  ( 0..^ N )  <->  ( ( ( N  -  K )  -  1 )  e. 
NN0  /\  N  e.  NN  /\  ( ( N  -  K )  - 
1 )  <  N
) )
4020, 21, 38, 39syl3anbrc 1165 . 2  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( N  -  K
)  -  1 )  e.  ( 0..^ N ) )
411, 40sylbi 120 1  |-  ( K  e.  ( 0..^ N )  ->  ( ( N  -  K )  -  1 )  e.  ( 0..^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    < clt 7800    <_ cle 7801    - cmin 7933   NNcn 8720   NN0cn0 8977   ZZcz 9054  ..^cfzo 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator