ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyss Unicode version

Theorem plyss 15377
Description: The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyss  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  S )  C_  (Poly `  T )
)

Proof of Theorem plyss
Dummy variables  a  f  n  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . 8  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  C_  CC )
2 cnex 8091 . . . . . . . 8  |-  CC  e.  _V
3 ssexg 4202 . . . . . . . 8  |-  ( ( T  C_  CC  /\  CC  e.  _V )  ->  T  e.  _V )
41, 2, 3sylancl 413 . . . . . . 7  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  e.  _V )
5 c0ex 8108 . . . . . . . 8  |-  0  e.  _V
65snex 4248 . . . . . . 7  |-  { 0 }  e.  _V
7 unexg 4511 . . . . . . 7  |-  ( ( T  e.  _V  /\  { 0 }  e.  _V )  ->  ( T  u.  { 0 } )  e. 
_V )
84, 6, 7sylancl 413 . . . . . 6  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( T  u.  {
0 } )  e. 
_V )
9 unss1 3353 . . . . . . 7  |-  ( S 
C_  T  ->  ( S  u.  { 0 } )  C_  ( T  u.  { 0 } ) )
109adantr 276 . . . . . 6  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( S  u.  {
0 } )  C_  ( T  u.  { 0 } ) )
11 mapss 6808 . . . . . 6  |-  ( ( ( T  u.  {
0 } )  e. 
_V  /\  ( S  u.  { 0 } ) 
C_  ( T  u.  { 0 } ) )  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  C_  ( ( T  u.  { 0 } )  ^m  NN0 ) )
128, 10, 11syl2anc 411 . . . . 5  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( S  u.  { 0 } )  ^m  NN0 )  C_  ( ( T  u.  { 0 } )  ^m  NN0 ) )
13 ssrexv 3269 . . . . 5  |-  ( ( ( S  u.  {
0 } )  ^m  NN0 )  C_  ( ( T  u.  { 0 } )  ^m  NN0 )  ->  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
1412, 13syl 14 . . . 4  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
1514reximdv 2611 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  E. n  e.  NN0  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
1615ss2abdv 3277 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  C_  { f  |  E. n  e. 
NN0  E. a  e.  ( ( T  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
17 sstr 3212 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  S  C_  CC )
18 plyval 15371 . . 3  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
1917, 18syl 14 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  S )  =  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
20 plyval 15371 . . 3  |-  ( T 
C_  CC  ->  (Poly `  T )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
2120adantl 277 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  T )  =  { f  |  E. n  e.  NN0  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
2216, 19, 213sstr4d 3249 1  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  S )  C_  (Poly `  T )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1375    e. wcel 2180   {cab 2195   E.wrex 2489   _Vcvv 2779    u. cun 3175    C_ wss 3177   {csn 3646    |-> cmpt 4124   ` cfv 5294  (class class class)co 5974    ^m cmap 6765   CCcc 7965   0cc0 7967    x. cmul 7972   NN0cn0 9337   ...cfz 10172   ^cexp 10727   sum_csu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-i2m1 8072
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-inn 9079  df-n0 9338  df-ply 15369
This theorem is referenced by:  plyssc  15378
  Copyright terms: Public domain W3C validator