ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyss Unicode version

Theorem plyss 15420
Description: The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyss  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  S )  C_  (Poly `  T )
)

Proof of Theorem plyss
Dummy variables  a  f  n  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . 8  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  C_  CC )
2 cnex 8131 . . . . . . . 8  |-  CC  e.  _V
3 ssexg 4223 . . . . . . . 8  |-  ( ( T  C_  CC  /\  CC  e.  _V )  ->  T  e.  _V )
41, 2, 3sylancl 413 . . . . . . 7  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  e.  _V )
5 c0ex 8148 . . . . . . . 8  |-  0  e.  _V
65snex 4269 . . . . . . 7  |-  { 0 }  e.  _V
7 unexg 4534 . . . . . . 7  |-  ( ( T  e.  _V  /\  { 0 }  e.  _V )  ->  ( T  u.  { 0 } )  e. 
_V )
84, 6, 7sylancl 413 . . . . . 6  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( T  u.  {
0 } )  e. 
_V )
9 unss1 3373 . . . . . . 7  |-  ( S 
C_  T  ->  ( S  u.  { 0 } )  C_  ( T  u.  { 0 } ) )
109adantr 276 . . . . . 6  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( S  u.  {
0 } )  C_  ( T  u.  { 0 } ) )
11 mapss 6846 . . . . . 6  |-  ( ( ( T  u.  {
0 } )  e. 
_V  /\  ( S  u.  { 0 } ) 
C_  ( T  u.  { 0 } ) )  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  C_  ( ( T  u.  { 0 } )  ^m  NN0 ) )
128, 10, 11syl2anc 411 . . . . 5  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( S  u.  { 0 } )  ^m  NN0 )  C_  ( ( T  u.  { 0 } )  ^m  NN0 ) )
13 ssrexv 3289 . . . . 5  |-  ( ( ( S  u.  {
0 } )  ^m  NN0 )  C_  ( ( T  u.  { 0 } )  ^m  NN0 )  ->  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
1412, 13syl 14 . . . 4  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
1514reximdv 2631 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  E. n  e.  NN0  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
1615ss2abdv 3297 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  C_  { f  |  E. n  e. 
NN0  E. a  e.  ( ( T  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
17 sstr 3232 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  S  C_  CC )
18 plyval 15414 . . 3  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
1917, 18syl 14 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  S )  =  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
20 plyval 15414 . . 3  |-  ( T 
C_  CC  ->  (Poly `  T )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
2120adantl 277 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  T )  =  { f  |  E. n  e.  NN0  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
2216, 19, 213sstr4d 3269 1  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  S )  C_  (Poly `  T )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799    u. cun 3195    C_ wss 3197   {csn 3666    |-> cmpt 4145   ` cfv 5318  (class class class)co 6007    ^m cmap 6803   CCcc 8005   0cc0 8007    x. cmul 8012   NN0cn0 9377   ...cfz 10212   ^cexp 10768   sum_csu 11872  Polycply 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-i2m1 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-inn 9119  df-n0 9378  df-ply 15412
This theorem is referenced by:  plyssc  15421
  Copyright terms: Public domain W3C validator