Step | Hyp | Ref
| Expression |
1 | | simpr 110 |
. . . . . . . 8
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ) |
2 | | cnex 7996 |
. . . . . . . 8
⊢ ℂ
∈ V |
3 | | ssexg 4168 |
. . . . . . . 8
⊢ ((𝑇 ⊆ ℂ ∧ ℂ
∈ V) → 𝑇 ∈
V) |
4 | 1, 2, 3 | sylancl 413 |
. . . . . . 7
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ∈ V) |
5 | | c0ex 8013 |
. . . . . . . 8
⊢ 0 ∈
V |
6 | 5 | snex 4214 |
. . . . . . 7
⊢ {0}
∈ V |
7 | | unexg 4474 |
. . . . . . 7
⊢ ((𝑇 ∈ V ∧ {0} ∈ V)
→ (𝑇 ∪ {0}) ∈
V) |
8 | 4, 6, 7 | sylancl 413 |
. . . . . 6
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑇 ∪ {0}) ∈ V) |
9 | | unss1 3328 |
. . . . . . 7
⊢ (𝑆 ⊆ 𝑇 → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) |
10 | 9 | adantr 276 |
. . . . . 6
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑆 ∪ {0}) ⊆ (𝑇 ∪ {0})) |
11 | | mapss 6745 |
. . . . . 6
⊢ (((𝑇 ∪ {0}) ∈ V ∧
(𝑆 ∪ {0}) ⊆
(𝑇 ∪ {0})) →
((𝑆 ∪ {0})
↑𝑚 ℕ0) ⊆ ((𝑇 ∪ {0}) ↑𝑚
ℕ0)) |
12 | 8, 10, 11 | syl2anc 411 |
. . . . 5
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ⊆ ((𝑇 ∪ {0}) ↑𝑚
ℕ0)) |
13 | | ssrexv 3244 |
. . . . 5
⊢ (((𝑆 ∪ {0})
↑𝑚 ℕ0) ⊆ ((𝑇 ∪ {0}) ↑𝑚
ℕ0) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
14 | 12, 13 | syl 14 |
. . . 4
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
15 | 14 | reximdv 2595 |
. . 3
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
16 | 15 | ss2abdv 3252 |
. 2
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} ⊆ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
17 | | sstr 3187 |
. . 3
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) |
18 | | plyval 14878 |
. . 3
⊢ (𝑆 ⊆ ℂ →
(Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
19 | 17, 18 | syl 14 |
. 2
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
20 | | plyval 14878 |
. . 3
⊢ (𝑇 ⊆ ℂ →
(Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑇 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
21 | 20 | adantl 277 |
. 2
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑇) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑇 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
22 | 16, 19, 21 | 3sstr4d 3224 |
1
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) |