| Intuitionistic Logic Explorer Theorem List (p. 155 of 159) | < Previous Next > | |
| Browser slow? Try the
Unicode version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem0d 15401 | Auxiliary lemma 4 for gausslemma2d 15418. (Contributed by AV, 9-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem0e 15402 | Auxiliary lemma 5 for gausslemma2d 15418. (Contributed by AV, 9-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem0f 15403 | Auxiliary lemma 6 for gausslemma2d 15418. (Contributed by AV, 9-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem0g 15404 | Auxiliary lemma 7 for gausslemma2d 15418. (Contributed by AV, 9-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem0h 15405 | Auxiliary lemma 8 for gausslemma2d 15418. (Contributed by AV, 9-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem0i 15406 | Auxiliary lemma 9 for gausslemma2d 15418. (Contributed by AV, 14-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem1a 15407* | Lemma for gausslemma2dlem1 15410. (Contributed by AV, 1-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem1cl 15408 |
Lemma for gausslemma2dlem1 15410. Closure of the body of the
definition
of | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem1f1o 15409* | Lemma for gausslemma2dlem1 15410. (Contributed by Jim Kingdon, 9-Aug-2025.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem1 15410* | Lemma 1 for gausslemma2d 15418. (Contributed by AV, 5-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem2 15411* | Lemma 2 for gausslemma2d 15418. (Contributed by AV, 4-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem3 15412* | Lemma 3 for gausslemma2d 15418. (Contributed by AV, 4-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem4 15413* | Lemma 4 for gausslemma2d 15418. (Contributed by AV, 16-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem5a 15414* | Lemma for gausslemma2dlem5 15415. (Contributed by AV, 8-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem5 15415* | Lemma 5 for gausslemma2d 15418. (Contributed by AV, 9-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem6 15416* | Lemma 6 for gausslemma2d 15418. (Contributed by AV, 16-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2dlem7 15417* | Lemma 7 for gausslemma2d 15418. (Contributed by AV, 13-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | gausslemma2d 15418* |
Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer
| ||||||||||||||||||||||||||||||||||||
| Theorem | lgseisenlem1 15419* |
Lemma for lgseisen 15423. If | ||||||||||||||||||||||||||||||||||||
| Theorem | lgseisenlem2 15420* |
Lemma for lgseisen 15423. The function | ||||||||||||||||||||||||||||||||||||
| Theorem | lgseisenlem3 15421* | Lemma for lgseisen 15423. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.) | ||||||||||||||||||||||||||||||||||||
| Theorem | lgseisenlem4 15422* | Lemma for lgseisen 15423. (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.) | ||||||||||||||||||||||||||||||||||||
| Theorem | lgseisen 15423* |
Eisenstein's lemma, an expression for | ||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlemsfi 15424* |
Lemma for lgsquad 15429. | ||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlemofi 15425* |
Lemma for lgsquad 15429. There are finitely many members of | ||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlem1 15426* |
Lemma for lgsquad 15429. Count the members of | ||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlem2 15427* |
Lemma for lgsquad 15429. Count the members of | ||||||||||||||||||||||||||||||||||||
| Theorem | lgsquadlem3 15428* | Lemma for lgsquad 15429. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad 15429 |
The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT]
p. 185. If | ||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad2lem1 15430 | Lemma for lgsquad2 15432. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad2lem2 15431* | Lemma for lgsquad2 15432. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad2 15432 | Extend lgsquad 15429 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | lgsquad3 15433 | Extend lgsquad2 15432 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | m1lgs 15434 |
The first supplement to the law of quadratic reciprocity. Negative one is
a square mod an odd prime | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1a1 15435* | Lemma 1 for 2lgslem1a 15437. (Contributed by AV, 16-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1a2 15436 | Lemma 2 for 2lgslem1a 15437. (Contributed by AV, 18-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1a 15437* | Lemma 1 for 2lgslem1 15440. (Contributed by AV, 18-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1b 15438* | Lemma 2 for 2lgslem1 15440. (Contributed by AV, 18-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1c 15439 | Lemma 3 for 2lgslem1 15440. (Contributed by AV, 19-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem1 15440* | Lemma 1 for 2lgs 15453. (Contributed by AV, 19-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem2 15441 | Lemma 2 for 2lgs 15453. (Contributed by AV, 20-Jun-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3a 15442 | Lemma for 2lgslem3a1 15446. (Contributed by AV, 14-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3b 15443 | Lemma for 2lgslem3b1 15447. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3c 15444 | Lemma for 2lgslem3c1 15448. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3d 15445 | Lemma for 2lgslem3d1 15449. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3a1 15446 | Lemma 1 for 2lgslem3 15450. (Contributed by AV, 15-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3b1 15447 | Lemma 2 for 2lgslem3 15450. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3c1 15448 | Lemma 3 for 2lgslem3 15450. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3d1 15449 | Lemma 4 for 2lgslem3 15450. (Contributed by AV, 15-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem3 15450 | Lemma 3 for 2lgs 15453. (Contributed by AV, 16-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgs2 15451 |
The Legendre symbol for | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgslem4 15452 |
Lemma 4 for 2lgs 15453: special case of 2lgs 15453
for | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgs 15453 |
The second supplement to the law of quadratic reciprocity (for the
Legendre symbol extended to arbitrary primes as second argument). Two
is a square modulo a prime | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem1 15454 | Lemma 1 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem2 15455 | Lemma 2 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3a 15456 | Lemma 1 for 2lgsoddprmlem3 15460. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3b 15457 | Lemma 2 for 2lgsoddprmlem3 15460. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3c 15458 | Lemma 3 for 2lgsoddprmlem3 15460. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3d 15459 | Lemma 4 for 2lgsoddprmlem3 15460. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem3 15460 | Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprmlem4 15461 | Lemma 4 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2lgsoddprm 15462 |
The second supplement to the law of quadratic reciprocity for odd primes
(common representation, see theorem 9.5 in [ApostolNT] p. 181): The
Legendre symbol for | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem1 15463* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem2 15464* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | mul2sq 15465 | Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem3 15466 | Lemma for 2sqlem5 15468. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem4 15467 | Lemma for 2sqlem5 15468. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem5 15468 | Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem6 15469* | Lemma for 2sq . If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem7 15470* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem8a 15471* | Lemma for 2sqlem8 15472. (Contributed by Mario Carneiro, 4-Jun-2016.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem8 15472* | Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem9 15473* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 2sqlem10 15474* | Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
This section describes the conventions we use. These conventions often refer to existing mathematical practices, which are discussed in more detail in other references. The following sources lay out how mathematics is developed without the law of the excluded middle. Of course, there are a greater number of sources which assume excluded middle and most of what is in them applies here too (especially in a treatment such as ours which is built on first-order logic and set theory, rather than, say, type theory). Studying how a topic is treated in the Metamath Proof Explorer and the references therein is often a good place to start (and is easy to compare with the Intuitionistic Logic Explorer). The textbooks provide a motivation for what we are doing, whereas Metamath lets you see in detail all hidden and implicit steps. Most standard theorems are accompanied by citations. Some closely followed texts include the following:
| ||||||||||||||||||||||||||||||||||||||
| Theorem | conventions 15475 |
Unless there is a reason to diverge, we follow the conventions of the
Metamath Proof Explorer (MPE, set.mm). This list of conventions is
intended to be read in conjunction with the corresponding conventions in
the Metamath Proof Explorer, and only the differences are described
below.
Label naming conventions Here are a few of the label naming conventions:
The following table shows some commonly-used abbreviations in labels which are not found in the Metamath Proof Explorer, in alphabetical order. For each abbreviation we provide a mnenomic to help you remember it, the source theorem/assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. For the "g" abbreviation, this is related to the set.mm usage, in which "is a set" conditions are converted from hypotheses to antecedents, but is also used where "is a set" conditions are added relative to similar set.mm theorems.
(Contributed by Jim Kingdon, 24-Feb-2020.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||
| Theorem | ex-or 15476 | Example for ax-io 710. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | ex-an 15477 | Example for ax-ia1 106. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | 1kp2ke3k 15478 |
Example for df-dec 9477, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision."
The proof here starts with This proof heavily relies on the decimal constructor df-dec 9477 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) | ||||||||||||||||||||||||||||||||||||
| Theorem | ex-fl 15479 | Example for df-fl 10379. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | ex-ceil 15480 | Example for df-ceil 10380. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | ex-exp 15481 | Example for df-exp 10650. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | ex-fac 15482 | Example for df-fac 10837. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | ex-bc 15483 | Example for df-bc 10859. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | ex-dvds 15484 | Example for df-dvds 11972: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) | ||||||||||||||||||||||||||||||||||||
| Theorem | ex-gcd 15485 | Example for df-gcd 12148. (Contributed by AV, 5-Sep-2021.) | ||||||||||||||||||||||||||||||||||||
| Theorem | mathbox 15486 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm. Guidelines: Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details. (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnsn 15487 | As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnor 15488 | Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnim 15489 | The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnan 15490 | The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnclavius 15491 | Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-imnimnn 15492 | If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 15491 as its last step. (Contributed by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||||||||||||||
Some of the following theorems, like bj-sttru 15494 or bj-stfal 15496 could be deduced from their analogues for decidability, but stability is not provable from decidability in minimal calculus, so direct proofs have their interest. | ||||||||||||||||||||||||||||||||||||||
| Theorem | bj-trst 15493 | A provable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-sttru 15494 | The true truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-fast 15495 | A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-stfal 15496 | The false truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnst 15497 |
Double negation of stability of a formula. Intuitionistic logic refutes
unstability (but does not prove stability) of any formula. This theorem
can also be proved in classical refutability calculus (see
https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal
calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See
nnnotnotr 15744 for the version not using the definition of
stability.
(Contributed by BJ, 9-Oct-2019.) Prove it in | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-nnbist 15498 |
If a formula is not refutable, then it is stable if and only if it is
provable. By double-negation translation, if | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-stst 15499 | Stability of a proposition is stable if and only if that proposition is stable. STAB is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||||||||||||||
| Theorem | bj-stim 15500 | A conjunction with a stable consequent is stable. See stabnot 834 for negation , bj-stan 15501 for conjunction , and bj-stal 15503 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |