HomeHome Intuitionistic Logic Explorer
Theorem List (p. 155 of 164)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15401-15500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremply1termlem 15401* Lemma for ply1term 15402. (Contributed by Mario Carneiro, 26-Jul-2014.)
 |-  F  =  ( z  e.  CC  |->  ( A  x.  ( z ^ N ) ) )   =>    |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^
 k ) ) ) )
 
Theoremply1term 15402* A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  F  =  ( z  e.  CC  |->  ( A  x.  ( z ^ N ) ) )   =>    |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e.  NN0 )  ->  F  e.  (Poly `  S ) )
 
Theoremplypow 15403* A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( S  C_  CC  /\  1  e.  S  /\  N  e.  NN0 )  ->  ( z  e.  CC  |->  ( z ^ N ) )  e.  (Poly `  S ) )
 
Theoremplyconst 15404 A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( S  C_  CC  /\  A  e.  S )  ->  ( CC  X.  { A } )  e.  (Poly `  S )
 )
 
Theoremplyid 15405 The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( S  C_  CC  /\  1  e.  S )  ->  Xp  e.  (Poly `  S )
 )
 
Theoremplyaddlem1 15406* Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  ( ph  ->  B : NN0 --> CC )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( M  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  ( B "
 ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... M ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  G  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... N ) ( ( B `  k
 )  x.  ( z ^ k ) ) ) )   =>    |-  ( ph  ->  ( F  oF  +  G )  =  ( z  e.  CC  |->  sum_ k  e.  (
 0 ... if ( M 
 <_  N ,  N ,  M ) ) ( ( ( A  oF  +  B ) `  k )  x.  (
 z ^ k ) ) ) )
 
Theoremplymullem1 15407* Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  ( ph  ->  B : NN0 --> CC )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( M  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  ( B "
 ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... M ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  G  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... N ) ( ( B `  k
 )  x.  ( z ^ k ) ) ) )   =>    |-  ( ph  ->  ( F  oF  x.  G )  =  ( z  e.  CC  |->  sum_ n  e.  (
 0 ... ( M  +  N ) ) (
 sum_ k  e.  (
 0 ... n ) ( ( A `  k
 )  x.  ( B `
  ( n  -  k ) ) )  x.  ( z ^ n ) ) ) )
 
Theoremplyaddlem 15408* Lemma for plyadd 15410. (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )
 )   &    |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( M  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  ( B "
 ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... M ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  G  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... N ) ( ( B `  k
 )  x.  ( z ^ k ) ) ) )   =>    |-  ( ph  ->  ( F  oF  +  G )  e.  (Poly `  S ) )
 
Theoremplymullem 15409* Lemma for plymul 15411. (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )
 )   &    |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( M  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  ( B "
 ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... M ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  G  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... N ) ( ( B `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  x.  y )  e.  S )   =>    |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S ) )
 
Theoremplyadd 15410* The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   =>    |-  ( ph  ->  ( F  oF  +  G )  e.  (Poly `  S ) )
 
Theoremplymul 15411* The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   =>    |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S ) )
 
Theoremplysub 15412* The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  -u 1  e.  S )   =>    |-  ( ph  ->  ( F  oF  -  G )  e.  (Poly `  S ) )
 
Theoremplyaddcl 15413 The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  ->  ( F  oF  +  G )  e.  (Poly `  CC ) )
 
Theoremplymulcl 15414 The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  ->  ( F  oF  x.  G )  e.  (Poly `  CC ) )
 
Theoremplysubcl 15415 The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  ->  ( F  oF  -  G )  e.  (Poly `  CC ) )
 
Theoremplycoeid3 15416* Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
 |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  ( ph  ->  ( A "
 ( ZZ>= `  ( D  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... D ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )   &    |-  ( ph  ->  X  e.  CC )   =>    |-  ( ph  ->  ( F `  X )  =  sum_ j  e.  (
 0 ... M ) ( ( A `  j
 )  x.  ( X ^ j ) ) )
 
Theoremplycolemc 15417* Lemma for plyco 15418. The result expressed as a sum, with a degree and coefficients for  F specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( N  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( x ^
 k ) ) ) )   =>    |-  ( ph  ->  (
 z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( ( G `
  z ) ^
 k ) ) )  e.  (Poly `  S ) )
 
Theoremplyco 15418* The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   =>    |-  ( ph  ->  ( F  o.  G )  e.  (Poly `  S )
 )
 
Theoremplycjlemc 15419* Lemma for plycj 15420. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
 |-  ( ph  ->  N  e.  NN0 )   &    |-  G  =  ( ( *  o.  F )  o.  * )   &    |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )   &    |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( z ^
 k ) ) ) )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   =>    |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... N ) ( ( ( *  o.  A ) `  k
 )  x.  ( z ^ k ) ) ) )
 
Theoremplycj 15420* The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on  ( * `  z ) independently of  z.) (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  G  =  ( ( *  o.  F )  o.  * )   &    |-  (
 ( ph  /\  x  e.  S )  ->  ( * `  x )  e.  S )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   =>    |-  ( ph  ->  G  e.  (Poly `  S )
 )
 
Theoremplycn 15421 A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 8110. (Revised by GG, 16-Mar-2025.)
 |-  ( F  e.  (Poly `  S )  ->  F  e.  ( CC -cn-> CC )
 )
 
Theoremplyrecj 15422 A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  ( * `  ( F `  A ) )  =  ( F `  ( * `  A ) ) )
 
Theoremplyreres 15423 Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR ) : RR --> RR )
 
Theoremdvply1 15424* Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... N ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  G  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... ( N  -  1 ) ) ( ( B `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  B  =  ( k  e.  NN0  |->  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) ) )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( CC  _D  F )  =  G )
 
Theoremdvply2g 15425 The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
 |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) ) 
 ->  ( CC  _D  F )  e.  (Poly `  S ) )
 
Theoremdvply2 15426 The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.)
 |-  ( F  e.  (Poly `  S )  ->  ( CC  _D  F )  e.  (Poly `  CC )
 )
 
11.2  Basic trigonometry
 
11.2.1  The exponential, sine, and cosine functions (cont.)
 
Theoremefcn 15427 The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
 |- 
 exp  e.  ( CC -cn-> CC )
 
Theoremsincn 15428 Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
 |- 
 sin  e.  ( CC -cn-> CC )
 
Theoremcoscn 15429 Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
 |- 
 cos  e.  ( CC -cn-> CC )
 
Theoremreeff1olem 15430* Lemma for reeff1o 15432. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
 
Theoremreeff1oleme 15431* Lemma for reeff1o 15432. (Contributed by Jim Kingdon, 15-May-2024.)
 |-  ( U  e.  (
 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x )  =  U )
 
Theoremreeff1o 15432 The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( exp  |`  RR ) : RR
 -1-1-onto-> RR+
 
Theoremefltlemlt 15433 Lemma for eflt 15434. The converse of efltim 12195 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( exp `  A )  <  ( exp `  B ) )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  ( ( abs `  ( A  -  B ) )  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) )   =>    |-  ( ph  ->  A  <  B )
 
Theoremeflt 15434 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <-> 
 ( exp `  A )  <  ( exp `  B ) ) )
 
Theoremefle 15435 The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <-> 
 ( exp `  A )  <_  ( exp `  B ) ) )
 
Theoremreefiso 15436 The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
 |-  ( exp  |`  RR )  Isom  <  ,  <  ( RR ,  RR+ )
 
Theoremreapef 15437 Apartness and the exponential function for reals. (Contributed by Jim Kingdon, 11-Jul-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( exp `  A ) #  ( exp `  B )
 ) )
 
11.2.2  Properties of pi = 3.14159...
 
Theorempilem1 15438 Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( A  e.  ( RR+ 
 i^i  ( `' sin " { 0 } )
 ) 
 <->  ( A  e.  RR+  /\  ( sin `  A )  =  0 )
 )
 
Theoremcosz12 15439 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( cos `  p )  =  0
 
Theoremsin0pilem1 15440* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
 
Theoremsin0pilem2 15441* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. q  e.  (
 2 (,) 4 ) ( ( sin `  q
 )  =  0  /\  A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )
 
Theorempilem3 15442 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
 |-  ( pi  e.  (
 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
 
Theorempigt2lt4 15443  pi is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  ( 2  <  pi  /\  pi  <  4 )
 
Theoremsinpi 15444 The sine of  pi is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( sin `  pi )  =  0
 
Theorempire 15445  pi is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  pi  e.  RR
 
Theorempicn 15446  pi is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  pi  e.  CC
 
Theorempipos 15447  pi is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  0  <  pi
 
Theorempirp 15448  pi is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  pi  e.  RR+
 
Theoremnegpicn 15449  -u pi is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u pi  e.  CC
 
Theoremsinhalfpilem 15450 Lemma for sinhalfpi 15455 and coshalfpi 15456. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( ( sin `  ( pi  /  2 ) )  =  1  /\  ( cos `  ( pi  / 
 2 ) )  =  0 )
 
Theoremhalfpire 15451  pi  /  2 is real. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( pi  /  2
 )  e.  RR
 
Theoremneghalfpire 15452  -u pi  / 
2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u ( pi  /  2
 )  e.  RR
 
Theoremneghalfpirx 15453  -u pi  / 
2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u ( pi  /  2
 )  e.  RR*
 
Theorempidiv2halves 15454 Adding  pi  /  2 to itself gives  pi. See 2halves 9328. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( ( pi  / 
 2 )  +  ( pi  /  2 ) )  =  pi
 
Theoremsinhalfpi 15455 The sine of  pi  /  2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( sin `  ( pi  /  2 ) )  =  1
 
Theoremcoshalfpi 15456 The cosine of  pi  /  2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( cos `  ( pi  /  2 ) )  =  0
 
Theoremcosneghalfpi 15457 The cosine of  -u pi  /  2 is zero. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( cos `  -u ( pi  /  2 ) )  =  0
 
Theoremefhalfpi 15458 The exponential of  _i pi  /  2 is  _i. (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( exp `  ( _i  x.  ( pi  / 
 2 ) ) )  =  _i
 
Theoremcospi 15459 The cosine of  pi is  -u 1. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( cos `  pi )  =  -u 1
 
Theoremefipi 15460 The exponential of  _i  x.  pi is  -u 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( exp `  ( _i  x.  pi ) )  =  -u 1
 
Theoremeulerid 15461 Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  ( ( exp `  ( _i  x.  pi ) )  +  1 )  =  0
 
Theoremsin2pi 15462 The sine of  2 pi is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( sin `  (
 2  x.  pi ) )  =  0
 
Theoremcos2pi 15463 The cosine of  2 pi is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( cos `  (
 2  x.  pi ) )  =  1
 
Theoremef2pi 15464 The exponential of  2 pi _i is  1. (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( exp `  ( _i  x.  ( 2  x.  pi ) ) )  =  1
 
Theoremef2kpi 15465 If  K is an integer, then the exponential of  2 K pi _i is  1. (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( K  e.  ZZ  ->  ( exp `  (
 ( _i  x.  (
 2  x.  pi ) )  x.  K ) )  =  1 )
 
Theoremefper 15466 The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  ( A  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) ) )  =  ( exp `  A ) )
 
Theoremsinperlem 15467 Lemma for sinper 15468 and cosper 15469. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( A  e.  CC  ->  ( F `  A )  =  ( (
 ( exp `  ( _i  x.  A ) ) O ( exp `  ( -u _i  x.  A ) ) )  /  D ) )   &    |-  ( ( A  +  ( K  x.  ( 2  x.  pi ) ) )  e. 
 CC  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  (
 2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D ) )   =>    |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( F `
  A ) )
 
Theoremsinper 15468 The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A ) )
 
Theoremcosper 15469 The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( cos `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( cos `  A ) )
 
Theoremsin2kpi 15470 If  K is an integer, then the sine of  2 K pi is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( K  e.  ZZ  ->  ( sin `  ( K  x.  ( 2  x.  pi ) ) )  =  0 )
 
Theoremcos2kpi 15471 If  K is an integer, then the cosine of  2 K pi is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  ( 2  x.  pi ) ) )  =  1 )
 
Theoremsin2pim 15472 Sine of a number subtracted from  2  x.  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( sin `  (
 ( 2  x.  pi )  -  A ) )  =  -u ( sin `  A ) )
 
Theoremcos2pim 15473 Cosine of a number subtracted from  2  x.  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( cos `  (
 ( 2  x.  pi )  -  A ) )  =  ( cos `  A ) )
 
Theoremsinmpi 15474 Sine of a number less  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( sin `  ( A  -  pi ) )  =  -u ( sin `  A ) )
 
Theoremcosmpi 15475 Cosine of a number less  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( cos `  ( A  -  pi ) )  =  -u ( cos `  A ) )
 
Theoremsinppi 15476 Sine of a number plus  pi. (Contributed by NM, 10-Aug-2008.)
 |-  ( A  e.  CC  ->  ( sin `  ( A  +  pi )
 )  =  -u ( sin `  A ) )
 
Theoremcosppi 15477 Cosine of a number plus  pi. (Contributed by NM, 18-Aug-2008.)
 |-  ( A  e.  CC  ->  ( cos `  ( A  +  pi )
 )  =  -u ( cos `  A ) )
 
Theoremefimpi 15478 The exponential function at  _i times a real number less 
pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( A  -  pi ) ) )  =  -u ( exp `  ( _i  x.  A ) ) )
 
Theoremsinhalfpip 15479 The sine of  pi  /  2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  CC  ->  ( sin `  (
 ( pi  /  2
 )  +  A ) )  =  ( cos `  A ) )
 
Theoremsinhalfpim 15480 The sine of  pi  /  2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  CC  ->  ( sin `  (
 ( pi  /  2
 )  -  A ) )  =  ( cos `  A ) )
 
Theoremcoshalfpip 15481 The cosine of  pi  /  2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  CC  ->  ( cos `  (
 ( pi  /  2
 )  +  A ) )  =  -u ( sin `  A ) )
 
Theoremcoshalfpim 15482 The cosine of  pi  /  2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  CC  ->  ( cos `  (
 ( pi  /  2
 )  -  A ) )  =  ( sin `  A ) )
 
Theoremptolemy 15483 Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 12241, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
 ( A  +  B )  +  ( C  +  D ) )  =  pi )  ->  (
 ( ( sin `  A )  x.  ( sin `  B ) )  +  (
 ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( sin `  ( B  +  C )
 )  x.  ( sin `  ( A  +  C ) ) ) )
 
Theoremsincosq1lem 15484 Lemma for sincosq1sgn 15485. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  ( pi 
 /  2 ) ) 
 ->  0  <  ( sin `  A ) )
 
Theoremsincosq1sgn 15485 The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  (
 0 (,) ( pi  / 
 2 ) )  ->  ( 0  <  ( sin `  A )  /\  0  <  ( cos `  A ) ) )
 
Theoremsincosq2sgn 15486 The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  (
 ( pi  /  2
 ) (,) pi )  ->  ( 0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )
 
Theoremsincosq3sgn 15487 The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  ( pi (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( ( sin `  A )  <  0  /\  ( cos `  A )  < 
 0 ) )
 
Theoremsincosq4sgn 15488 The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
 |-  ( A  e.  (
 ( 3  x.  ( pi  /  2 ) ) (,) ( 2  x.  pi ) )  ->  ( ( sin `  A )  <  0  /\  0  <  ( cos `  A ) ) )
 
Theoremsinq12gt0 15489 The sine of a number strictly between 
0 and  pi is positive. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  (
 0 (,) pi )  -> 
 0  <  ( sin `  A ) )
 
Theoremsinq34lt0t 15490 The sine of a number strictly between  pi and  2  x.  pi is negative. (Contributed by NM, 17-Aug-2008.)
 |-  ( A  e.  ( pi (,) ( 2  x.  pi ) )  ->  ( sin `  A )  <  0 )
 
Theoremcosq14gt0 15491 The cosine of a number strictly between  -u pi  /  2 and  pi  /  2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
 |-  ( A  e.  ( -u ( pi  /  2
 ) (,) ( pi  / 
 2 ) )  -> 
 0  <  ( cos `  A ) )
 
Theoremcosq23lt0 15492 The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
 |-  ( A  e.  (
 ( pi  /  2
 ) (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( cos `  A )  <  0 )
 
Theoremcoseq0q4123 15493 Location of the zeroes of cosine in  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) ). (Contributed by Jim Kingdon, 14-Mar-2024.)
 |-  ( A  e.  ( -u ( pi  /  2
 ) (,) ( 3  x.  ( pi  /  2
 ) ) )  ->  ( ( cos `  A )  =  0  <->  A  =  ( pi  /  2 ) ) )
 
Theoremcoseq00topi 15494 Location of the zeroes of cosine in 
( 0 [,] pi ). (Contributed by David Moews, 28-Feb-2017.)
 |-  ( A  e.  (
 0 [,] pi )  ->  ( ( cos `  A )  =  0  <->  A  =  ( pi  /  2 ) ) )
 
Theoremcoseq0negpitopi 15495 Location of the zeroes of cosine in 
( -u pi (,] pi ). (Contributed by David Moews, 28-Feb-2017.)
 |-  ( A  e.  ( -u pi (,] pi ) 
 ->  ( ( cos `  A )  =  0  <->  A  e.  { ( pi  /  2 ) ,  -u ( pi  /  2
 ) } ) )
 
Theoremtanrpcl 15496 Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014.)
 |-  ( A  e.  (
 0 (,) ( pi  / 
 2 ) )  ->  ( tan `  A )  e.  RR+ )
 
Theoremtangtx 15497 The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
 |-  ( A  e.  (
 0 (,) ( pi  / 
 2 ) )  ->  A  <  ( tan `  A ) )
 
Theoremsincosq1eq 15498 Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  +  B )  =  1 )  ->  ( sin `  ( A  x.  ( pi  / 
 2 ) ) )  =  ( cos `  ( B  x.  ( pi  / 
 2 ) ) ) )
 
Theoremsincos4thpi 15499 The sine and cosine of  pi  /  4. (Contributed by Paul Chapman, 25-Jan-2008.)
 |-  ( ( sin `  ( pi  /  4 ) )  =  ( 1  /  ( sqr `  2 )
 )  /\  ( cos `  ( pi  /  4
 ) )  =  ( 1  /  ( sqr `  2 ) ) )
 
Theoremtan4thpi 15500 The tangent of  pi  /  4. (Contributed by Mario Carneiro, 5-Apr-2015.)
 |-  ( tan `  ( pi  /  4 ) )  =  1
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16383
  Copyright terms: Public domain < Previous  Next >