ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcanap3d Unicode version

Theorem divcanap3d 8203
Description: A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
Hypotheses
Ref Expression
divcld.1  |-  ( ph  ->  A  e.  CC )
divcld.2  |-  ( ph  ->  B  e.  CC )
divclapd.3  |-  ( ph  ->  B #  0 )
Assertion
Ref Expression
divcanap3d  |-  ( ph  ->  ( ( B  x.  A )  /  B
)  =  A )

Proof of Theorem divcanap3d
StepHypRef Expression
1 divcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 divcld.2 . 2  |-  ( ph  ->  B  e.  CC )
3 divclapd.3 . 2  |-  ( ph  ->  B #  0 )
4 divcanap3 8107 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( B  x.  A
)  /  B )  =  A )
51, 2, 3, 4syl3anc 1172 1  |-  ( ph  ->  ( ( B  x.  A )  /  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1287    e. wcel 1436   class class class wbr 3822  (class class class)co 5615   CCcc 7295   0cc0 7297    x. cmul 7302   # cap 8002    / cdiv 8081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-opab 3877  df-id 4096  df-po 4099  df-iso 4100  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-iota 4948  df-fun 4985  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003  df-div 8082
This theorem is referenced by:  prodgt0gt0  8250  ltdivmul  8275  ledivmul  8276  ltdiv23  8291  lediv23  8292  zneo  8783  2tnp1ge0ge0  9639  modqdiffl  9673  zesq  9972  bcn1  10066  crre  10190  resqrexlemover  10342  resqrexlemcalc1  10346  max0addsup  10551  ltoddhalfle  10799  flodddiv4  10840  sqrt2irrlem  11046
  Copyright terms: Public domain W3C validator