| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divcanap3d | Unicode version | ||
| Description: A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.) |
| Ref | Expression |
|---|---|
| divcld.1 |
|
| divcld.2 |
|
| divclapd.3 |
|
| Ref | Expression |
|---|---|
| divcanap3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcld.1 |
. 2
| |
| 2 | divcld.2 |
. 2
| |
| 3 | divclapd.3 |
. 2
| |
| 4 | divcanap3 8770 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 |
| This theorem is referenced by: prodgt0gt0 8923 ltdivmul 8948 ledivmul 8949 ltdiv23 8964 lediv23 8965 zneo 9473 2tnp1ge0ge0 10442 modqdiffl 10478 zesq 10801 bcn1 10901 crre 11110 resqrexlemover 11263 resqrexlemcalc1 11267 max0addsup 11472 eirraplem 12030 ltoddhalfle 12146 flodddiv4 12189 bitsp1e 12205 bitsp1o 12206 sqrt2irrlem 12425 pythagtriplem12 12540 pythagtriplem14 12542 pythagtriplem15 12543 pythagtriplem16 12544 pythagtriplem17 12545 fldivp1 12613 4sqlem17 12672 dvrecap 15127 perfectlem2 15414 lgsquadlem1 15496 lgsquadlem2 15497 2lgslem1c 15509 2lgslem3a 15512 |
| Copyright terms: Public domain | W3C validator |