ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divrecapd Unicode version

Theorem divrecapd 8866
Description: Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by Jim Kingdon, 29-Feb-2020.)
Hypotheses
Ref Expression
divcld.1  |-  ( ph  ->  A  e.  CC )
divcld.2  |-  ( ph  ->  B  e.  CC )
divclapd.3  |-  ( ph  ->  B #  0 )
Assertion
Ref Expression
divrecapd  |-  ( ph  ->  ( A  /  B
)  =  ( A  x.  ( 1  /  B ) ) )

Proof of Theorem divrecapd
StepHypRef Expression
1 divcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 divcld.2 . 2  |-  ( ph  ->  B  e.  CC )
3 divclapd.3 . 2  |-  ( ph  ->  B #  0 )
4 divrecap 8761 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
51, 2, 3, 4syl3anc 1250 1  |-  ( ph  ->  ( A  /  B
)  =  ( A  x.  ( 1  /  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   CCcc 7923   0cc0 7925   1c1 7926    x. cmul 7930   # cap 8654    / cdiv 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746
This theorem is referenced by:  divap1d  8874  prodgt0gt0  8924  ltdiv1  8941  ltrec  8956  ltdiv2  8960  lediv2  8964  lediv12a  8967  qapne  9760  qdivcl  9764  expsubap  10732  expdivap  10735  resqrexlemnm  11329  isumdivapc  11739  fsumdivapc  11761  trirecip  11812  geo2sum  11825  geo2lim  11827  0.999...  11832  prodfdivap  11858  fproddivap  11941  ege2le3  11982  efsub  11992  eftlub  12001  eirraplem  12088  sqrt2irrap  12502  cdivcncfap  15076  divcncfap  15086  rpcxpsub  15380  rpdivcxp  15383  rprelogbdiv  15429
  Copyright terms: Public domain W3C validator