| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divrecapd | Unicode version | ||
| Description: Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by Jim Kingdon, 29-Feb-2020.) |
| Ref | Expression |
|---|---|
| divcld.1 |
|
| divcld.2 |
|
| divclapd.3 |
|
| Ref | Expression |
|---|---|
| divrecapd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcld.1 |
. 2
| |
| 2 | divcld.2 |
. 2
| |
| 3 | divclapd.3 |
. 2
| |
| 4 | divrecap 8791 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 |
| This theorem is referenced by: divap1d 8904 prodgt0gt0 8954 ltdiv1 8971 ltrec 8986 ltdiv2 8990 lediv2 8994 lediv12a 8997 qapne 9790 qdivcl 9794 expsubap 10764 expdivap 10767 resqrexlemnm 11414 isumdivapc 11824 fsumdivapc 11846 trirecip 11897 geo2sum 11910 geo2lim 11912 0.999... 11917 prodfdivap 11943 fproddivap 12026 ege2le3 12067 efsub 12077 eftlub 12086 eirraplem 12173 sqrt2irrap 12587 cdivcncfap 15161 divcncfap 15171 rpcxpsub 15465 rpdivcxp 15468 rprelogbdiv 15514 |
| Copyright terms: Public domain | W3C validator |