ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rerecclapd Unicode version

Theorem rerecclapd 8726
Description: Closure law for reciprocal. (Contributed by Jim Kingdon, 29-Feb-2020.)
Hypotheses
Ref Expression
redivclapd.1  |-  ( ph  ->  A  e.  RR )
rerecclapd.2  |-  ( ph  ->  A #  0 )
Assertion
Ref Expression
rerecclapd  |-  ( ph  ->  ( 1  /  A
)  e.  RR )

Proof of Theorem rerecclapd
StepHypRef Expression
1 redivclapd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 rerecclapd.2 . 2  |-  ( ph  ->  A #  0 )
3 rerecclap 8622 . 2  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
1  /  A )  e.  RR )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   class class class wbr 3981  (class class class)co 5841   RRcr 7748   0cc0 7749   1c1 7750   # cap 8475    / cdiv 8564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565
This theorem is referenced by:  recgt0  8741  prodgt0gt0  8742  ltdiv1  8759  ltrec  8774  lerec  8775  ltdiv2  8778  ltrec1  8779  lerec2  8780  lediv2  8782  lediv12a  8785  recreclt  8791  nnrecl  9108  expnlbnd  10575  cvgratnnlembern  11460  cvgratnnlemfm  11466
  Copyright terms: Public domain W3C validator