Proof of Theorem ringcom
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 999 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 2 | | ringacl.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 3 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 4 | 2, 3 | ringidcl 13576 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
| 5 | 1, 4 | syl 14 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) |
| 6 | | ringacl.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑅) |
| 7 | 2, 6 | ringacl 13586 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ 𝐵 ∧
(1r‘𝑅)
∈ 𝐵) →
((1r‘𝑅)
+
(1r‘𝑅))
∈ 𝐵) |
| 8 | 1, 5, 5, 7 | syl3anc 1249 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((1r‘𝑅) + (1r‘𝑅)) ∈ 𝐵) |
| 9 | | simp2 1000 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 10 | | simp3 1001 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 11 | | eqid 2196 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 12 | 2, 6, 11 | ringdi 13574 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
(((1r‘𝑅)
+
(1r‘𝑅))
∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)(𝑋 + 𝑌)) = ((((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)𝑋) +
(((1r‘𝑅)
+
(1r‘𝑅))(.r‘𝑅)𝑌))) |
| 13 | 1, 8, 9, 10, 12 | syl13anc 1251 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)(𝑋 + 𝑌)) = ((((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)𝑋) +
(((1r‘𝑅)
+
(1r‘𝑅))(.r‘𝑅)𝑌))) |
| 14 | 2, 6 | ringacl 13586 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 15 | 2, 6, 11 | ringdir 13575 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
((1r‘𝑅)
∈ 𝐵 ∧
(1r‘𝑅)
∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝐵)) → (((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)(𝑋 + 𝑌)) = (((1r‘𝑅)(.r‘𝑅)(𝑋 + 𝑌)) +
((1r‘𝑅)(.r‘𝑅)(𝑋 + 𝑌)))) |
| 16 | 1, 5, 5, 14, 15 | syl13anc 1251 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)(𝑋 + 𝑌)) = (((1r‘𝑅)(.r‘𝑅)(𝑋 + 𝑌)) +
((1r‘𝑅)(.r‘𝑅)(𝑋 + 𝑌)))) |
| 17 | 13, 16 | eqtr3d 2231 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)𝑋) +
(((1r‘𝑅)
+
(1r‘𝑅))(.r‘𝑅)𝑌)) = (((1r‘𝑅)(.r‘𝑅)(𝑋 + 𝑌)) +
((1r‘𝑅)(.r‘𝑅)(𝑋 + 𝑌)))) |
| 18 | 2, 6, 11 | ringdir 13575 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧
((1r‘𝑅)
∈ 𝐵 ∧
(1r‘𝑅)
∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)𝑋) = (((1r‘𝑅)(.r‘𝑅)𝑋) +
((1r‘𝑅)(.r‘𝑅)𝑋))) |
| 19 | 1, 5, 5, 9, 18 | syl13anc 1251 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)𝑋) = (((1r‘𝑅)(.r‘𝑅)𝑋) +
((1r‘𝑅)(.r‘𝑅)𝑋))) |
| 20 | 2, 11, 3 | ringlidm 13579 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝑋) = 𝑋) |
| 21 | 1, 9, 20 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝑋) = 𝑋) |
| 22 | 21, 21 | oveq12d 5940 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((1r‘𝑅)(.r‘𝑅)𝑋) +
((1r‘𝑅)(.r‘𝑅)𝑋)) = (𝑋 + 𝑋)) |
| 23 | 19, 22 | eqtrd 2229 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)𝑋) = (𝑋 + 𝑋)) |
| 24 | 2, 6, 11 | ringdir 13575 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧
((1r‘𝑅)
∈ 𝐵 ∧
(1r‘𝑅)
∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)𝑌) = (((1r‘𝑅)(.r‘𝑅)𝑌) +
((1r‘𝑅)(.r‘𝑅)𝑌))) |
| 25 | 1, 5, 5, 10, 24 | syl13anc 1251 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)𝑌) = (((1r‘𝑅)(.r‘𝑅)𝑌) +
((1r‘𝑅)(.r‘𝑅)𝑌))) |
| 26 | 2, 11, 3 | ringlidm 13579 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝑌) = 𝑌) |
| 27 | 1, 10, 26 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝑌) = 𝑌) |
| 28 | 27, 27 | oveq12d 5940 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((1r‘𝑅)(.r‘𝑅)𝑌) +
((1r‘𝑅)(.r‘𝑅)𝑌)) = (𝑌 + 𝑌)) |
| 29 | 25, 28 | eqtrd 2229 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)𝑌) = (𝑌 + 𝑌)) |
| 30 | 23, 29 | oveq12d 5940 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((((1r‘𝑅) + (1r‘𝑅))(.r‘𝑅)𝑋) +
(((1r‘𝑅)
+
(1r‘𝑅))(.r‘𝑅)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) |
| 31 | 2, 11, 3 | ringlidm 13579 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌)) |
| 32 | 1, 14, 31 | syl2anc 411 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌)) |
| 33 | 32, 32 | oveq12d 5940 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((1r‘𝑅)(.r‘𝑅)(𝑋 + 𝑌)) +
((1r‘𝑅)(.r‘𝑅)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
| 34 | 17, 30, 33 | 3eqtr3d 2237 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
| 35 | | ringgrp 13557 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 36 | 1, 35 | syl 14 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 37 | 2, 6 | ringacl 13586 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 + 𝑋) ∈ 𝐵) |
| 38 | 1, 9, 9, 37 | syl3anc 1249 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑋) ∈ 𝐵) |
| 39 | 2, 6 | grpass 13141 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) |
| 40 | 36, 38, 10, 10, 39 | syl13anc 1251 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) |
| 41 | 2, 6 | grpass 13141 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
| 42 | 36, 14, 9, 10, 41 | syl13anc 1251 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
| 43 | 34, 40, 42 | 3eqtr4d 2239 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌)) |
| 44 | 2, 6 | ringacl 13586 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵) |
| 45 | 1, 38, 10, 44 | syl3anc 1249 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵) |
| 46 | 2, 6 | ringacl 13586 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵) |
| 47 | 1, 14, 9, 46 | syl3anc 1249 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵) |
| 48 | 2, 6 | grprcan 13169 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝐵 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))) |
| 49 | 36, 45, 47, 10, 48 | syl13anc 1251 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))) |
| 50 | 43, 49 | mpbid 147 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)) |
| 51 | 2, 6 | grpass 13141 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌))) |
| 52 | 36, 9, 9, 10, 51 | syl13anc 1251 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌))) |
| 53 | 2, 6 | grpass 13141 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋))) |
| 54 | 36, 9, 10, 9, 53 | syl13anc 1251 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋))) |
| 55 | 50, 52, 54 | 3eqtr3d 2237 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋))) |
| 56 | 2, 6 | ringacl 13586 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
| 57 | 56 | 3com23 1211 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
| 58 | 2, 6 | grplcan 13194 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋))) |
| 59 | 36, 14, 57, 9, 58 | syl13anc 1251 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋))) |
| 60 | 55, 59 | mpbid 147 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |