Step | Hyp | Ref
| Expression |
1 | | simp1 997 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β π
β Ring) |
2 | | ringacl.b |
. . . . . . . . . . 11
β’ π΅ = (Baseβπ
) |
3 | | eqid 2177 |
. . . . . . . . . . 11
β’
(1rβπ
) = (1rβπ
) |
4 | 2, 3 | ringidcl 13208 |
. . . . . . . . . 10
β’ (π
β Ring β
(1rβπ
)
β π΅) |
5 | 1, 4 | syl 14 |
. . . . . . . . 9
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (1rβπ
) β π΅) |
6 | | ringacl.p |
. . . . . . . . . 10
β’ + =
(+gβπ
) |
7 | 2, 6 | ringacl 13218 |
. . . . . . . . 9
β’ ((π
β Ring β§
(1rβπ
)
β π΅ β§
(1rβπ
)
β π΅) β
((1rβπ
)
+
(1rβπ
))
β π΅) |
8 | 1, 5, 5, 7 | syl3anc 1238 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((1rβπ
) + (1rβπ
)) β π΅) |
9 | | simp2 998 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β π β π΅) |
10 | | simp3 999 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β π β π΅) |
11 | | eqid 2177 |
. . . . . . . . 9
β’
(.rβπ
) = (.rβπ
) |
12 | 2, 6, 11 | ringdi 13206 |
. . . . . . . 8
β’ ((π
β Ring β§
(((1rβπ
)
+
(1rβπ
))
β π΅ β§ π β π΅ β§ π β π΅)) β (((1rβπ
) + (1rβπ
))(.rβπ
)(π + π)) = ((((1rβπ
) + (1rβπ
))(.rβπ
)π) +
(((1rβπ
)
+
(1rβπ
))(.rβπ
)π))) |
13 | 1, 8, 9, 10, 12 | syl13anc 1240 |
. . . . . . 7
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((1rβπ
) + (1rβπ
))(.rβπ
)(π + π)) = ((((1rβπ
) + (1rβπ
))(.rβπ
)π) +
(((1rβπ
)
+
(1rβπ
))(.rβπ
)π))) |
14 | 2, 6 | ringacl 13218 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π + π) β π΅) |
15 | 2, 6, 11 | ringdir 13207 |
. . . . . . . 8
β’ ((π
β Ring β§
((1rβπ
)
β π΅ β§
(1rβπ
)
β π΅ β§ (π + π) β π΅)) β (((1rβπ
) + (1rβπ
))(.rβπ
)(π + π)) = (((1rβπ
)(.rβπ
)(π + π)) +
((1rβπ
)(.rβπ
)(π + π)))) |
16 | 1, 5, 5, 14, 15 | syl13anc 1240 |
. . . . . . 7
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((1rβπ
) + (1rβπ
))(.rβπ
)(π + π)) = (((1rβπ
)(.rβπ
)(π + π)) +
((1rβπ
)(.rβπ
)(π + π)))) |
17 | 13, 16 | eqtr3d 2212 |
. . . . . 6
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((((1rβπ
) + (1rβπ
))(.rβπ
)π) +
(((1rβπ
)
+
(1rβπ
))(.rβπ
)π)) = (((1rβπ
)(.rβπ
)(π + π)) +
((1rβπ
)(.rβπ
)(π + π)))) |
18 | 2, 6, 11 | ringdir 13207 |
. . . . . . . . 9
β’ ((π
β Ring β§
((1rβπ
)
β π΅ β§
(1rβπ
)
β π΅ β§ π β π΅)) β (((1rβπ
) + (1rβπ
))(.rβπ
)π) = (((1rβπ
)(.rβπ
)π) +
((1rβπ
)(.rβπ
)π))) |
19 | 1, 5, 5, 9, 18 | syl13anc 1240 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((1rβπ
) + (1rβπ
))(.rβπ
)π) = (((1rβπ
)(.rβπ
)π) +
((1rβπ
)(.rβπ
)π))) |
20 | 2, 11, 3 | ringlidm 13211 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π β π΅) β ((1rβπ
)(.rβπ
)π) = π) |
21 | 1, 9, 20 | syl2anc 411 |
. . . . . . . . 9
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((1rβπ
)(.rβπ
)π) = π) |
22 | 21, 21 | oveq12d 5895 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((1rβπ
)(.rβπ
)π) +
((1rβπ
)(.rβπ
)π)) = (π + π)) |
23 | 19, 22 | eqtrd 2210 |
. . . . . . 7
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((1rβπ
) + (1rβπ
))(.rβπ
)π) = (π + π)) |
24 | 2, 6, 11 | ringdir 13207 |
. . . . . . . . 9
β’ ((π
β Ring β§
((1rβπ
)
β π΅ β§
(1rβπ
)
β π΅ β§ π β π΅)) β (((1rβπ
) + (1rβπ
))(.rβπ
)π) = (((1rβπ
)(.rβπ
)π) +
((1rβπ
)(.rβπ
)π))) |
25 | 1, 5, 5, 10, 24 | syl13anc 1240 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((1rβπ
) + (1rβπ
))(.rβπ
)π) = (((1rβπ
)(.rβπ
)π) +
((1rβπ
)(.rβπ
)π))) |
26 | 2, 11, 3 | ringlidm 13211 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π β π΅) β ((1rβπ
)(.rβπ
)π) = π) |
27 | 1, 10, 26 | syl2anc 411 |
. . . . . . . . 9
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((1rβπ
)(.rβπ
)π) = π) |
28 | 27, 27 | oveq12d 5895 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((1rβπ
)(.rβπ
)π) +
((1rβπ
)(.rβπ
)π)) = (π + π)) |
29 | 25, 28 | eqtrd 2210 |
. . . . . . 7
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((1rβπ
) + (1rβπ
))(.rβπ
)π) = (π + π)) |
30 | 23, 29 | oveq12d 5895 |
. . . . . 6
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((((1rβπ
) + (1rβπ
))(.rβπ
)π) +
(((1rβπ
)
+
(1rβπ
))(.rβπ
)π)) = ((π + π) + (π + π))) |
31 | 2, 11, 3 | ringlidm 13211 |
. . . . . . . 8
β’ ((π
β Ring β§ (π + π) β π΅) β ((1rβπ
)(.rβπ
)(π + π)) = (π + π)) |
32 | 1, 14, 31 | syl2anc 411 |
. . . . . . 7
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((1rβπ
)(.rβπ
)(π + π)) = (π + π)) |
33 | 32, 32 | oveq12d 5895 |
. . . . . 6
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((1rβπ
)(.rβπ
)(π + π)) +
((1rβπ
)(.rβπ
)(π + π))) = ((π + π) + (π + π))) |
34 | 17, 30, 33 | 3eqtr3d 2218 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((π + π) + (π + π)) = ((π + π) + (π + π))) |
35 | | ringgrp 13189 |
. . . . . . 7
β’ (π
β Ring β π
β Grp) |
36 | 1, 35 | syl 14 |
. . . . . 6
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β π
β Grp) |
37 | 2, 6 | ringacl 13218 |
. . . . . . 7
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π + π) β π΅) |
38 | 1, 9, 9, 37 | syl3anc 1238 |
. . . . . 6
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π + π) β π΅) |
39 | 2, 6 | grpass 12891 |
. . . . . 6
β’ ((π
β Grp β§ ((π + π) β π΅ β§ π β π΅ β§ π β π΅)) β (((π + π) + π) + π) = ((π + π) + (π + π))) |
40 | 36, 38, 10, 10, 39 | syl13anc 1240 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((π + π) + π) + π) = ((π + π) + (π + π))) |
41 | 2, 6 | grpass 12891 |
. . . . . 6
β’ ((π
β Grp β§ ((π + π) β π΅ β§ π β π΅ β§ π β π΅)) β (((π + π) + π) + π) = ((π + π) + (π + π))) |
42 | 36, 14, 9, 10, 41 | syl13anc 1240 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((π + π) + π) + π) = ((π + π) + (π + π))) |
43 | 34, 40, 42 | 3eqtr4d 2220 |
. . . 4
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (((π + π) + π) + π) = (((π + π) + π) + π)) |
44 | 2, 6 | ringacl 13218 |
. . . . . 6
β’ ((π
β Ring β§ (π + π) β π΅ β§ π β π΅) β ((π + π) + π) β π΅) |
45 | 1, 38, 10, 44 | syl3anc 1238 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((π + π) + π) β π΅) |
46 | 2, 6 | ringacl 13218 |
. . . . . 6
β’ ((π
β Ring β§ (π + π) β π΅ β§ π β π΅) β ((π + π) + π) β π΅) |
47 | 1, 14, 9, 46 | syl3anc 1238 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((π + π) + π) β π΅) |
48 | 2, 6 | grprcan 12915 |
. . . . 5
β’ ((π
β Grp β§ (((π + π) + π) β π΅ β§ ((π + π) + π) β π΅ β§ π β π΅)) β ((((π + π) + π) + π) = (((π + π) + π) + π) β ((π + π) + π) = ((π + π) + π))) |
49 | 36, 45, 47, 10, 48 | syl13anc 1240 |
. . . 4
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((((π + π) + π) + π) = (((π + π) + π) + π) β ((π + π) + π) = ((π + π) + π))) |
50 | 43, 49 | mpbid 147 |
. . 3
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((π + π) + π) = ((π + π) + π)) |
51 | 2, 6 | grpass 12891 |
. . . 4
β’ ((π
β Grp β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π + π) + π) = (π + (π + π))) |
52 | 36, 9, 9, 10, 51 | syl13anc 1240 |
. . 3
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((π + π) + π) = (π + (π + π))) |
53 | 2, 6 | grpass 12891 |
. . . 4
β’ ((π
β Grp β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π + π) + π) = (π + (π + π))) |
54 | 36, 9, 10, 9, 53 | syl13anc 1240 |
. . 3
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((π + π) + π) = (π + (π + π))) |
55 | 50, 52, 54 | 3eqtr3d 2218 |
. 2
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π + (π + π)) = (π + (π + π))) |
56 | 2, 6 | ringacl 13218 |
. . . 4
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π + π) β π΅) |
57 | 56 | 3com23 1209 |
. . 3
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π + π) β π΅) |
58 | 2, 6 | grplcan 12937 |
. . 3
β’ ((π
β Grp β§ ((π + π) β π΅ β§ (π + π) β π΅ β§ π β π΅)) β ((π + (π + π)) = (π + (π + π)) β (π + π) = (π + π))) |
59 | 36, 14, 57, 9, 58 | syl13anc 1240 |
. 2
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β ((π + (π + π)) = (π + (π + π)) β (π + π) = (π + π))) |
60 | 55, 59 | mpbid 147 |
1
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π + π) = (π + π)) |