ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringcom GIF version

Theorem ringcom 13027
Description: Commutativity of the additive group of a ring. (Contributed by Gérard Lang, 4-Dec-2014.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringcom ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem ringcom
StepHypRef Expression
1 simp1 997 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
2 ringacl.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3 eqid 2177 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
42, 3ringidcl 13016 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
51, 4syl 14 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (1r𝑅) ∈ 𝐵)
6 ringacl.p . . . . . . . . . 10 + = (+g𝑅)
72, 6ringacl 13026 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅) + (1r𝑅)) ∈ 𝐵)
81, 5, 5, 7syl3anc 1238 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅) + (1r𝑅)) ∈ 𝐵)
9 simp2 998 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
10 simp3 999 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
11 eqid 2177 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
122, 6, 11ringdi 13014 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((1r𝑅) + (1r𝑅)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)))
131, 8, 9, 10, 12syl13anc 1240 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)))
142, 6ringacl 13026 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
152, 6, 11ringdir 13015 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
161, 5, 5, 14, 15syl13anc 1240 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
1713, 16eqtr3d 2212 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
182, 6, 11ringdir 13015 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵𝑋𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)))
191, 5, 5, 9, 18syl13anc 1240 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)))
202, 11, 3ringlidm 13019 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅)(.r𝑅)𝑋) = 𝑋)
211, 9, 20syl2anc 411 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑋) = 𝑋)
2221, 21oveq12d 5886 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)) = (𝑋 + 𝑋))
2319, 22eqtrd 2210 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (𝑋 + 𝑋))
242, 6, 11ringdir 13015 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵𝑌𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)))
251, 5, 5, 10, 24syl13anc 1240 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)))
262, 11, 3ringlidm 13019 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑌) = 𝑌)
271, 10, 26syl2anc 411 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑌) = 𝑌)
2827, 27oveq12d 5886 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)) = (𝑌 + 𝑌))
2925, 28eqtrd 2210 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (𝑌 + 𝑌))
3023, 29oveq12d 5886 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
312, 11, 3ringlidm 13019 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
321, 14, 31syl2anc 411 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
3332, 32oveq12d 5886 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3417, 30, 333eqtr3d 2218 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
35 ringgrp 12997 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
361, 35syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
372, 6ringacl 13026 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑋𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
381, 9, 9, 37syl3anc 1238 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
392, 6grpass 12763 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑋) ∈ 𝐵𝑌𝐵𝑌𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
4036, 38, 10, 10, 39syl13anc 1240 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
412, 6grpass 12763 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4236, 14, 9, 10, 41syl13anc 1240 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4334, 40, 423eqtr4d 2220 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
442, 6ringacl 13026 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
451, 38, 10, 44syl3anc 1238 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
462, 6ringacl 13026 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
471, 14, 9, 46syl3anc 1238 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
482, 6grprcan 12787 . . . . 5 ((𝑅 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝐵 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵𝑌𝐵)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
4936, 45, 47, 10, 48syl13anc 1240 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5043, 49mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
512, 6grpass 12763 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
5236, 9, 9, 10, 51syl13anc 1240 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
532, 6grpass 12763 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5436, 9, 10, 9, 53syl13anc 1240 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5550, 52, 543eqtr3d 2218 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
562, 6ringacl 13026 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
57563com23 1209 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
582, 6grplcan 12808 . . 3 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
5936, 14, 57, 9, 58syl13anc 1240 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
6055, 59mpbid 147 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 978   = wceq 1353  wcel 2148  cfv 5211  (class class class)co 5868  Basecbs 12432  +gcplusg 12505  .rcmulr 12506  Grpcgrp 12754  1rcur 12955  Ringcrg 12992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-addcom 7889  ax-addass 7891  ax-i2m1 7894  ax-0lt1 7895  ax-0id 7897  ax-rnegex 7898  ax-pre-ltirr 7901  ax-pre-ltadd 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4289  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-f1 5216  df-fo 5217  df-f1o 5218  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-pnf 7971  df-mnf 7972  df-ltxr 7974  df-inn 8896  df-2 8954  df-3 8955  df-ndx 12435  df-slot 12436  df-base 12438  df-sets 12439  df-plusg 12518  df-mulr 12519  df-0g 12642  df-mgm 12654  df-sgrp 12687  df-mnd 12697  df-grp 12757  df-minusg 12758  df-mgp 12945  df-ur 12956  df-ring 12994
This theorem is referenced by:  ringabl  13028
  Copyright terms: Public domain W3C validator