ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringcom GIF version

Theorem ringcom 13530
Description: Commutativity of the additive group of a ring. (Contributed by Gérard Lang, 4-Dec-2014.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringcom ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem ringcom
StepHypRef Expression
1 simp1 999 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
2 ringacl.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3 eqid 2193 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
42, 3ringidcl 13519 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
51, 4syl 14 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (1r𝑅) ∈ 𝐵)
6 ringacl.p . . . . . . . . . 10 + = (+g𝑅)
72, 6ringacl 13529 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅) + (1r𝑅)) ∈ 𝐵)
81, 5, 5, 7syl3anc 1249 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅) + (1r𝑅)) ∈ 𝐵)
9 simp2 1000 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
10 simp3 1001 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
11 eqid 2193 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
122, 6, 11ringdi 13517 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((1r𝑅) + (1r𝑅)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)))
131, 8, 9, 10, 12syl13anc 1251 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)))
142, 6ringacl 13529 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
152, 6, 11ringdir 13518 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
161, 5, 5, 14, 15syl13anc 1251 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
1713, 16eqtr3d 2228 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
182, 6, 11ringdir 13518 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵𝑋𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)))
191, 5, 5, 9, 18syl13anc 1251 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)))
202, 11, 3ringlidm 13522 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅)(.r𝑅)𝑋) = 𝑋)
211, 9, 20syl2anc 411 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑋) = 𝑋)
2221, 21oveq12d 5937 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)) = (𝑋 + 𝑋))
2319, 22eqtrd 2226 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (𝑋 + 𝑋))
242, 6, 11ringdir 13518 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵𝑌𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)))
251, 5, 5, 10, 24syl13anc 1251 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)))
262, 11, 3ringlidm 13522 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑌) = 𝑌)
271, 10, 26syl2anc 411 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑌) = 𝑌)
2827, 27oveq12d 5937 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)) = (𝑌 + 𝑌))
2925, 28eqtrd 2226 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (𝑌 + 𝑌))
3023, 29oveq12d 5937 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
312, 11, 3ringlidm 13522 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
321, 14, 31syl2anc 411 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
3332, 32oveq12d 5937 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3417, 30, 333eqtr3d 2234 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
35 ringgrp 13500 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
361, 35syl 14 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
372, 6ringacl 13529 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑋𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
381, 9, 9, 37syl3anc 1249 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
392, 6grpass 13084 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑋) ∈ 𝐵𝑌𝐵𝑌𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
4036, 38, 10, 10, 39syl13anc 1251 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
412, 6grpass 13084 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4236, 14, 9, 10, 41syl13anc 1251 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4334, 40, 423eqtr4d 2236 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
442, 6ringacl 13529 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
451, 38, 10, 44syl3anc 1249 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
462, 6ringacl 13529 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
471, 14, 9, 46syl3anc 1249 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
482, 6grprcan 13112 . . . . 5 ((𝑅 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝐵 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵𝑌𝐵)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
4936, 45, 47, 10, 48syl13anc 1251 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5043, 49mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
512, 6grpass 13084 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
5236, 9, 9, 10, 51syl13anc 1251 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
532, 6grpass 13084 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5436, 9, 10, 9, 53syl13anc 1251 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5550, 52, 543eqtr3d 2234 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
562, 6ringacl 13529 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
57563com23 1211 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
582, 6grplcan 13137 . . 3 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
5936, 14, 57, 9, 58syl13anc 1251 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
6055, 59mpbid 147 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  Grpcgrp 13075  1rcur 13458  Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-mgp 13420  df-ur 13459  df-ring 13497
This theorem is referenced by:  ringabl  13531
  Copyright terms: Public domain W3C validator