ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringsubdi Unicode version

Theorem ringsubdi 13025
Description: Ring multiplication distributes over subtraction. (subdi 8316 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringsubdi.b  |-  B  =  ( Base `  R
)
ringsubdi.t  |-  .x.  =  ( .r `  R )
ringsubdi.m  |-  .-  =  ( -g `  R )
ringsubdi.r  |-  ( ph  ->  R  e.  Ring )
ringsubdi.x  |-  ( ph  ->  X  e.  B )
ringsubdi.y  |-  ( ph  ->  Y  e.  B )
ringsubdi.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
ringsubdi  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X 
.x.  Y )  .-  ( X  .x.  Z ) ) )

Proof of Theorem ringsubdi
StepHypRef Expression
1 ringsubdi.r . . . 4  |-  ( ph  ->  R  e.  Ring )
2 ringsubdi.x . . . 4  |-  ( ph  ->  X  e.  B )
3 ringsubdi.y . . . 4  |-  ( ph  ->  Y  e.  B )
4 ringgrp 12977 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
51, 4syl 14 . . . . 5  |-  ( ph  ->  R  e.  Grp )
6 ringsubdi.z . . . . 5  |-  ( ph  ->  Z  e.  B )
7 ringsubdi.b . . . . . 6  |-  B  =  ( Base `  R
)
8 eqid 2175 . . . . . 6  |-  ( invg `  R )  =  ( invg `  R )
97, 8grpinvcl 12781 . . . . 5  |-  ( ( R  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  R ) `  Z
)  e.  B )
105, 6, 9syl2anc 411 . . . 4  |-  ( ph  ->  ( ( invg `  R ) `  Z
)  e.  B )
11 eqid 2175 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
12 ringsubdi.t . . . . 5  |-  .x.  =  ( .r `  R )
137, 11, 12ringdi 12994 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( invg `  R ) `  Z
)  e.  B ) )  ->  ( X  .x.  ( Y ( +g  `  R ) ( ( invg `  R
) `  Z )
) )  =  ( ( X  .x.  Y
) ( +g  `  R
) ( X  .x.  ( ( invg `  R ) `  Z
) ) ) )
141, 2, 3, 10, 13syl13anc 1240 . . 3  |-  ( ph  ->  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( X  .x.  ( ( invg `  R ) `  Z
) ) ) )
157, 12, 8, 1, 2, 6ringmneg2 13023 . . . 4  |-  ( ph  ->  ( X  .x.  (
( invg `  R ) `  Z
) )  =  ( ( invg `  R ) `  ( X  .x.  Z ) ) )
1615oveq2d 5881 . . 3  |-  ( ph  ->  ( ( X  .x.  Y ) ( +g  `  R ) ( X 
.x.  ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( ( invg `  R ) `
 ( X  .x.  Z ) ) ) )
1714, 16eqtrd 2208 . 2  |-  ( ph  ->  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( ( invg `  R ) `
 ( X  .x.  Z ) ) ) )
18 ringsubdi.m . . . . 5  |-  .-  =  ( -g `  R )
197, 11, 8, 18grpsubval 12779 . . . 4  |-  ( ( Y  e.  B  /\  Z  e.  B )  ->  ( Y  .-  Z
)  =  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )
203, 6, 19syl2anc 411 . . 3  |-  ( ph  ->  ( Y  .-  Z
)  =  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )
2120oveq2d 5881 . 2  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) ) )
227, 12ringcl 12989 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
231, 2, 3, 22syl3anc 1238 . . 3  |-  ( ph  ->  ( X  .x.  Y
)  e.  B )
247, 12ringcl 12989 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
251, 2, 6, 24syl3anc 1238 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
267, 11, 8, 18grpsubval 12779 . . 3  |-  ( ( ( X  .x.  Y
)  e.  B  /\  ( X  .x.  Z )  e.  B )  -> 
( ( X  .x.  Y )  .-  ( X  .x.  Z ) )  =  ( ( X 
.x.  Y ) ( +g  `  R ) ( ( invg `  R ) `  ( X  .x.  Z ) ) ) )
2723, 25, 26syl2anc 411 . 2  |-  ( ph  ->  ( ( X  .x.  Y )  .-  ( X  .x.  Z ) )  =  ( ( X 
.x.  Y ) ( +g  `  R ) ( ( invg `  R ) `  ( X  .x.  Z ) ) ) )
2817, 21, 273eqtr4d 2218 1  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X 
.x.  Y )  .-  ( X  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491   .rcmulr 12492   Grpcgrp 12737   invgcminusg 12738   -gcsg 12739   Ringcrg 12972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12430  df-slot 12431  df-base 12433  df-sets 12434  df-plusg 12504  df-mulr 12505  df-0g 12627  df-mgm 12639  df-sgrp 12672  df-mnd 12682  df-grp 12740  df-minusg 12741  df-sbg 12742  df-mgp 12926  df-ur 12936  df-ring 12974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator