ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringsubdi Unicode version

Theorem ringsubdi 13433
Description: Ring multiplication distributes over subtraction. (subdi 8377 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringsubdi.b  |-  B  =  ( Base `  R
)
ringsubdi.t  |-  .x.  =  ( .r `  R )
ringsubdi.m  |-  .-  =  ( -g `  R )
ringsubdi.r  |-  ( ph  ->  R  e.  Ring )
ringsubdi.x  |-  ( ph  ->  X  e.  B )
ringsubdi.y  |-  ( ph  ->  Y  e.  B )
ringsubdi.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
ringsubdi  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X 
.x.  Y )  .-  ( X  .x.  Z ) ) )

Proof of Theorem ringsubdi
StepHypRef Expression
1 ringsubdi.r . . . 4  |-  ( ph  ->  R  e.  Ring )
2 ringsubdi.x . . . 4  |-  ( ph  ->  X  e.  B )
3 ringsubdi.y . . . 4  |-  ( ph  ->  Y  e.  B )
4 ringgrp 13380 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
51, 4syl 14 . . . . 5  |-  ( ph  ->  R  e.  Grp )
6 ringsubdi.z . . . . 5  |-  ( ph  ->  Z  e.  B )
7 ringsubdi.b . . . . . 6  |-  B  =  ( Base `  R
)
8 eqid 2189 . . . . . 6  |-  ( invg `  R )  =  ( invg `  R )
97, 8grpinvcl 13015 . . . . 5  |-  ( ( R  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  R ) `  Z
)  e.  B )
105, 6, 9syl2anc 411 . . . 4  |-  ( ph  ->  ( ( invg `  R ) `  Z
)  e.  B )
11 eqid 2189 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
12 ringsubdi.t . . . . 5  |-  .x.  =  ( .r `  R )
137, 11, 12ringdi 13397 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( invg `  R ) `  Z
)  e.  B ) )  ->  ( X  .x.  ( Y ( +g  `  R ) ( ( invg `  R
) `  Z )
) )  =  ( ( X  .x.  Y
) ( +g  `  R
) ( X  .x.  ( ( invg `  R ) `  Z
) ) ) )
141, 2, 3, 10, 13syl13anc 1251 . . 3  |-  ( ph  ->  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( X  .x.  ( ( invg `  R ) `  Z
) ) ) )
157, 12, 8, 1, 2, 6ringmneg2 13431 . . . 4  |-  ( ph  ->  ( X  .x.  (
( invg `  R ) `  Z
) )  =  ( ( invg `  R ) `  ( X  .x.  Z ) ) )
1615oveq2d 5916 . . 3  |-  ( ph  ->  ( ( X  .x.  Y ) ( +g  `  R ) ( X 
.x.  ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( ( invg `  R ) `
 ( X  .x.  Z ) ) ) )
1714, 16eqtrd 2222 . 2  |-  ( ph  ->  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( ( invg `  R ) `
 ( X  .x.  Z ) ) ) )
18 ringsubdi.m . . . . 5  |-  .-  =  ( -g `  R )
197, 11, 8, 18grpsubval 13013 . . . 4  |-  ( ( Y  e.  B  /\  Z  e.  B )  ->  ( Y  .-  Z
)  =  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )
203, 6, 19syl2anc 411 . . 3  |-  ( ph  ->  ( Y  .-  Z
)  =  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )
2120oveq2d 5916 . 2  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) ) )
227, 12ringcl 13392 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
231, 2, 3, 22syl3anc 1249 . . 3  |-  ( ph  ->  ( X  .x.  Y
)  e.  B )
247, 12ringcl 13392 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
251, 2, 6, 24syl3anc 1249 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
267, 11, 8, 18grpsubval 13013 . . 3  |-  ( ( ( X  .x.  Y
)  e.  B  /\  ( X  .x.  Z )  e.  B )  -> 
( ( X  .x.  Y )  .-  ( X  .x.  Z ) )  =  ( ( X 
.x.  Y ) ( +g  `  R ) ( ( invg `  R ) `  ( X  .x.  Z ) ) ) )
2723, 25, 26syl2anc 411 . 2  |-  ( ph  ->  ( ( X  .x.  Y )  .-  ( X  .x.  Z ) )  =  ( ( X 
.x.  Y ) ( +g  `  R ) ( ( invg `  R ) `  ( X  .x.  Z ) ) ) )
2817, 21, 273eqtr4d 2232 1  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X 
.x.  Y )  .-  ( X  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   ` cfv 5238  (class class class)co 5900   Basecbs 12523   +g cplusg 12600   .rcmulr 12601   Grpcgrp 12968   invgcminusg 12969   -gcsg 12970   Ringcrg 13375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-3 9014  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-plusg 12613  df-mulr 12614  df-0g 12774  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971  df-minusg 12972  df-sbg 12973  df-mgp 13300  df-ur 13339  df-ring 13377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator