ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringsubdi GIF version

Theorem ringsubdi 13552
Description: Ring multiplication distributes over subtraction. (subdi 8404 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringsubdi.b 𝐵 = (Base‘𝑅)
ringsubdi.t · = (.r𝑅)
ringsubdi.m = (-g𝑅)
ringsubdi.r (𝜑𝑅 ∈ Ring)
ringsubdi.x (𝜑𝑋𝐵)
ringsubdi.y (𝜑𝑌𝐵)
ringsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ringsubdi (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))

Proof of Theorem ringsubdi
StepHypRef Expression
1 ringsubdi.r . . . 4 (𝜑𝑅 ∈ Ring)
2 ringsubdi.x . . . 4 (𝜑𝑋𝐵)
3 ringsubdi.y . . . 4 (𝜑𝑌𝐵)
4 ringgrp 13497 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
51, 4syl 14 . . . . 5 (𝜑𝑅 ∈ Grp)
6 ringsubdi.z . . . . 5 (𝜑𝑍𝐵)
7 ringsubdi.b . . . . . 6 𝐵 = (Base‘𝑅)
8 eqid 2193 . . . . . 6 (invg𝑅) = (invg𝑅)
97, 8grpinvcl 13120 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑍𝐵) → ((invg𝑅)‘𝑍) ∈ 𝐵)
105, 6, 9syl2anc 411 . . . 4 (𝜑 → ((invg𝑅)‘𝑍) ∈ 𝐵)
11 eqid 2193 . . . . 5 (+g𝑅) = (+g𝑅)
12 ringsubdi.t . . . . 5 · = (.r𝑅)
137, 11, 12ringdi 13514 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
141, 2, 3, 10, 13syl13anc 1251 . . 3 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
157, 12, 8, 1, 2, 6ringmneg2 13550 . . . 4 (𝜑 → (𝑋 · ((invg𝑅)‘𝑍)) = ((invg𝑅)‘(𝑋 · 𝑍)))
1615oveq2d 5934 . . 3 (𝜑 → ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
1714, 16eqtrd 2226 . 2 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
18 ringsubdi.m . . . . 5 = (-g𝑅)
197, 11, 8, 18grpsubval 13118 . . . 4 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
203, 6, 19syl2anc 411 . . 3 (𝜑 → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
2120oveq2d 5934 . 2 (𝜑 → (𝑋 · (𝑌 𝑍)) = (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))))
227, 12ringcl 13509 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
231, 2, 3, 22syl3anc 1249 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
247, 12ringcl 13509 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
251, 2, 6, 24syl3anc 1249 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
267, 11, 8, 18grpsubval 13118 . . 3 (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2723, 25, 26syl2anc 411 . 2 (𝜑 → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2817, 21, 273eqtr4d 2236 1 (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  Grpcgrp 13072  invgcminusg 13073  -gcsg 13074  Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mgp 13417  df-ur 13456  df-ring 13494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator