| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringsubdi | GIF version | ||
| Description: Ring multiplication distributes over subtraction. (subdi 8459 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| ringsubdi.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringsubdi.t | ⊢ · = (.r‘𝑅) |
| ringsubdi.m | ⊢ − = (-g‘𝑅) |
| ringsubdi.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringsubdi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringsubdi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ringsubdi.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringsubdi | ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringsubdi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringsubdi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringsubdi.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringgrp 13796 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 6 | ringsubdi.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | ringsubdi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | eqid 2205 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 9 | 7, 8 | grpinvcl 13413 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝑅)‘𝑍) ∈ 𝐵) |
| 10 | 5, 6, 9 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘𝑍) ∈ 𝐵) |
| 11 | eqid 2205 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 12 | ringsubdi.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 13 | 7, 11, 12 | ringdi 13813 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍)))) |
| 14 | 1, 2, 3, 10, 13 | syl13anc 1252 | . . 3 ⊢ (𝜑 → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍)))) |
| 15 | 7, 12, 8, 1, 2, 6 | ringmneg2 13849 | . . . 4 ⊢ (𝜑 → (𝑋 · ((invg‘𝑅)‘𝑍)) = ((invg‘𝑅)‘(𝑋 · 𝑍))) |
| 16 | 15 | oveq2d 5962 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 17 | 14, 16 | eqtrd 2238 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 18 | ringsubdi.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 19 | 7, 11, 8, 18 | grpsubval 13411 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) |
| 20 | 3, 6, 19 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) |
| 21 | 20 | oveq2d 5962 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍)))) |
| 22 | 7, 12 | ringcl 13808 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 23 | 1, 2, 3, 22 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 24 | 7, 12 | ringcl 13808 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 25 | 1, 2, 6, 24 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
| 26 | 7, 11, 8, 18 | grpsubval 13411 | . . 3 ⊢ (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) − (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 27 | 23, 25, 26 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) − (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 28 | 17, 21, 27 | 3eqtr4d 2248 | 1 ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ‘cfv 5272 (class class class)co 5946 Basecbs 12865 +gcplusg 12942 .rcmulr 12943 Grpcgrp 13365 invgcminusg 13366 -gcsg 13367 Ringcrg 13791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-inn 9039 df-2 9097 df-3 9098 df-ndx 12868 df-slot 12869 df-base 12871 df-sets 12872 df-plusg 12955 df-mulr 12956 df-0g 13123 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-minusg 13369 df-sbg 13370 df-mgp 13716 df-ur 13755 df-ring 13793 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |