ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngsubdi GIF version

Theorem rngsubdi 13763
Description: Ring multiplication distributes over subtraction. (subdi 8470 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 13868. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
rngsubdi.b 𝐵 = (Base‘𝑅)
rngsubdi.t · = (.r𝑅)
rngsubdi.m = (-g𝑅)
rngsubdi.r (𝜑𝑅 ∈ Rng)
rngsubdi.x (𝜑𝑋𝐵)
rngsubdi.y (𝜑𝑌𝐵)
rngsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
rngsubdi (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))

Proof of Theorem rngsubdi
StepHypRef Expression
1 rngsubdi.r . . . 4 (𝜑𝑅 ∈ Rng)
2 rngsubdi.x . . . 4 (𝜑𝑋𝐵)
3 rngsubdi.y . . . 4 (𝜑𝑌𝐵)
4 rngsubdi.b . . . . 5 𝐵 = (Base‘𝑅)
5 eqid 2206 . . . . 5 (invg𝑅) = (invg𝑅)
6 rnggrp 13750 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
71, 6syl 14 . . . . 5 (𝜑𝑅 ∈ Grp)
8 rngsubdi.z . . . . 5 (𝜑𝑍𝐵)
94, 5, 7, 8grpinvcld 13431 . . . 4 (𝜑 → ((invg𝑅)‘𝑍) ∈ 𝐵)
10 eqid 2206 . . . . 5 (+g𝑅) = (+g𝑅)
11 rngsubdi.t . . . . 5 · = (.r𝑅)
124, 10, 11rngdi 13752 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
131, 2, 3, 9, 12syl13anc 1252 . . 3 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
144, 11, 5, 1, 2, 8rngmneg2 13760 . . . 4 (𝜑 → (𝑋 · ((invg𝑅)‘𝑍)) = ((invg𝑅)‘(𝑋 · 𝑍)))
1514oveq2d 5970 . . 3 (𝜑 → ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
1613, 15eqtrd 2239 . 2 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
17 rngsubdi.m . . . . 5 = (-g𝑅)
184, 10, 5, 17grpsubval 13428 . . . 4 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
193, 8, 18syl2anc 411 . . 3 (𝜑 → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
2019oveq2d 5970 . 2 (𝜑 → (𝑋 · (𝑌 𝑍)) = (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))))
214, 11rngcl 13756 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
221, 2, 3, 21syl3anc 1250 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
234, 11rngcl 13756 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
241, 2, 8, 23syl3anc 1250 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
254, 10, 5, 17grpsubval 13428 . . 3 (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2622, 24, 25syl2anc 411 . 2 (𝜑 → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2716, 20, 263eqtr4d 2249 1 (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  .rcmulr 12960  Grpcgrp 13382  invgcminusg 13383  -gcsg 13384  Rngcrng 13744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-minusg 13386  df-sbg 13387  df-abl 13673  df-mgp 13733  df-rng 13745
This theorem is referenced by:  2idlcpblrng  14335
  Copyright terms: Public domain W3C validator