| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngsubdi | GIF version | ||
| Description: Ring multiplication distributes over subtraction. (subdi 8470 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 13868. (Revised by AV, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngsubdi.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngsubdi.t | ⊢ · = (.r‘𝑅) |
| rngsubdi.m | ⊢ − = (-g‘𝑅) |
| rngsubdi.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngsubdi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngsubdi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rngsubdi.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngsubdi | ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngsubdi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rngsubdi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | rngsubdi.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | rngsubdi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | eqid 2206 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 6 | rnggrp 13750 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 1, 6 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngsubdi.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 9 | 4, 5, 7, 8 | grpinvcld 13431 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘𝑍) ∈ 𝐵) |
| 10 | eqid 2206 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 11 | rngsubdi.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 12 | 4, 10, 11 | rngdi 13752 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍)))) |
| 13 | 1, 2, 3, 9, 12 | syl13anc 1252 | . . 3 ⊢ (𝜑 → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍)))) |
| 14 | 4, 11, 5, 1, 2, 8 | rngmneg2 13760 | . . . 4 ⊢ (𝜑 → (𝑋 · ((invg‘𝑅)‘𝑍)) = ((invg‘𝑅)‘(𝑋 · 𝑍))) |
| 15 | 14 | oveq2d 5970 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 16 | 13, 15 | eqtrd 2239 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 17 | rngsubdi.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 18 | 4, 10, 5, 17 | grpsubval 13428 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) |
| 19 | 3, 8, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) |
| 20 | 19 | oveq2d 5970 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍)))) |
| 21 | 4, 11 | rngcl 13756 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 22 | 1, 2, 3, 21 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 23 | 4, 11 | rngcl 13756 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 24 | 1, 2, 8, 23 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
| 25 | 4, 10, 5, 17 | grpsubval 13428 | . . 3 ⊢ (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) − (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 26 | 22, 24, 25 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) − (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 27 | 16, 20, 26 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 +gcplusg 12959 .rcmulr 12960 Grpcgrp 13382 invgcminusg 13383 -gcsg 13384 Rngcrng 13744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-3 9109 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-plusg 12972 df-mulr 12973 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-minusg 13386 df-sbg 13387 df-abl 13673 df-mgp 13733 df-rng 13745 |
| This theorem is referenced by: 2idlcpblrng 14335 |
| Copyright terms: Public domain | W3C validator |