ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sralemg Unicode version

Theorem sralemg 14004
Description: Lemma for srabaseg 14005 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
srapart.s  |-  ( ph  ->  S  C_  ( Base `  W ) )
srapart.ex  |-  ( ph  ->  W  e.  X )
sralemg.1  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
sralem.2  |-  (Scalar `  ndx )  =/=  ( E `  ndx )
sralem.3  |-  ( .s
`  ndx )  =/=  ( E `  ndx )
sralem.4  |-  ( .i
`  ndx )  =/=  ( E `  ndx )
Assertion
Ref Expression
sralemg  |-  ( ph  ->  ( E `  W
)  =  ( E `
 A ) )

Proof of Theorem sralemg
StepHypRef Expression
1 srapart.ex . . . 4  |-  ( ph  ->  W  e.  X )
2 basfn 12746 . . . . . . 7  |-  Base  Fn  _V
31elexd 2776 . . . . . . 7  |-  ( ph  ->  W  e.  _V )
4 funfvex 5576 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
54funfni 5359 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
62, 3, 5sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  W
)  e.  _V )
7 srapart.s . . . . . 6  |-  ( ph  ->  S  C_  ( Base `  W ) )
86, 7ssexd 4174 . . . . 5  |-  ( ph  ->  S  e.  _V )
9 ressex 12753 . . . . 5  |-  ( ( W  e.  X  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
101, 8, 9syl2anc 411 . . . 4  |-  ( ph  ->  ( Ws  S )  e.  _V )
11 sralemg.1 . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
12 sralem.2 . . . . . 6  |-  (Scalar `  ndx )  =/=  ( E `  ndx )
1312necomi 2452 . . . . 5  |-  ( E `
 ndx )  =/=  (Scalar `  ndx )
14 scaslid 12840 . . . . . 6  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
1514simpri 113 . . . . 5  |-  (Scalar `  ndx )  e.  NN
1611, 13, 15setsslnid 12740 . . . 4  |-  ( ( W  e.  X  /\  ( Ws  S )  e.  _V )  ->  ( E `  W )  =  ( E `  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
) )
171, 10, 16syl2anc 411 . . 3  |-  ( ph  ->  ( E `  W
)  =  ( E `
 ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
) )
1815a1i 9 . . . . 5  |-  ( ph  ->  (Scalar `  ndx )  e.  NN )
19 setsex 12720 . . . . 5  |-  ( ( W  e.  X  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
201, 18, 10, 19syl3anc 1249 . . . 4  |-  ( ph  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
21 mulrslid 12819 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2221slotex 12715 . . . . 5  |-  ( W  e.  X  ->  ( .r `  W )  e. 
_V )
231, 22syl 14 . . . 4  |-  ( ph  ->  ( .r `  W
)  e.  _V )
24 sralem.3 . . . . . 6  |-  ( .s
`  ndx )  =/=  ( E `  ndx )
2524necomi 2452 . . . . 5  |-  ( E `
 ndx )  =/=  ( .s `  ndx )
26 vscaslid 12850 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
2726simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
2811, 25, 27setsslnid 12740 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  ( E `  ( W sSet  <.
(Scalar `  ndx ) ,  ( Ws  S ) >. )
)  =  ( E `
 ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
) )
2920, 23, 28syl2anc 411 . . 3  |-  ( ph  ->  ( E `  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) )  =  ( E `  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) ) )
3027a1i 9 . . . . 5  |-  ( ph  ->  ( .s `  ndx )  e.  NN )
31 setsex 12720 . . . . 5  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
3220, 30, 23, 31syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
33 sralem.4 . . . . . 6  |-  ( .i
`  ndx )  =/=  ( E `  ndx )
3433necomi 2452 . . . . 5  |-  ( E `
 ndx )  =/=  ( .i `  ndx )
35 ipslid 12858 . . . . . 6  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
3635simpri 113 . . . . 5  |-  ( .i
`  ndx )  e.  NN
3711, 34, 36setsslnid 12740 . . . 4  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  ( E `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) )  =  ( E `  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
3832, 23, 37syl2anc 411 . . 3  |-  ( ph  ->  ( E `  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) )  =  ( E `  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
3917, 29, 383eqtrd 2233 . 2  |-  ( ph  ->  ( E `  W
)  =  ( E `
 ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
40 srapart.a . . . 4  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
41 sraval 14003 . . . . 5  |-  ( ( W  e.  X  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
421, 7, 41syl2anc 411 . . . 4  |-  ( ph  ->  ( (subringAlg  `  W ) `
 S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
4340, 42eqtrd 2229 . . 3  |-  ( ph  ->  A  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
4443fveq2d 5563 . 2  |-  ( ph  ->  ( E `  A
)  =  ( E `
 ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
4539, 44eqtr4d 2232 1  |-  ( ph  ->  ( E `  W
)  =  ( E `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   _Vcvv 2763    C_ wss 3157   <.cop 3626    Fn wfn 5254   ` cfv 5259  (class class class)co 5923   NNcn 8992   ndxcnx 12685   sSet csts 12686  Slot cslot 12687   Basecbs 12688   ↾s cress 12689   .rcmulr 12766  Scalarcsca 12768   .scvsca 12769   .icip 12770  subringAlg csra 13999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1re 7975  ax-addrcl 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-5 9054  df-6 9055  df-7 9056  df-8 9057  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-iress 12696  df-mulr 12779  df-sca 12781  df-vsca 12782  df-ip 12783  df-sra 14001
This theorem is referenced by:  srabaseg  14005  sraaddgg  14006  sramulrg  14007  sratsetg  14011  sradsg  14014
  Copyright terms: Public domain W3C validator