ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sralemg Unicode version

Theorem sralemg 13934
Description: Lemma for srabaseg 13935 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
srapart.s  |-  ( ph  ->  S  C_  ( Base `  W ) )
srapart.ex  |-  ( ph  ->  W  e.  X )
sralemg.1  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
sralem.2  |-  (Scalar `  ndx )  =/=  ( E `  ndx )
sralem.3  |-  ( .s
`  ndx )  =/=  ( E `  ndx )
sralem.4  |-  ( .i
`  ndx )  =/=  ( E `  ndx )
Assertion
Ref Expression
sralemg  |-  ( ph  ->  ( E `  W
)  =  ( E `
 A ) )

Proof of Theorem sralemg
StepHypRef Expression
1 srapart.ex . . . 4  |-  ( ph  ->  W  e.  X )
2 basfn 12676 . . . . . . 7  |-  Base  Fn  _V
31elexd 2773 . . . . . . 7  |-  ( ph  ->  W  e.  _V )
4 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
54funfni 5354 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
62, 3, 5sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  W
)  e.  _V )
7 srapart.s . . . . . 6  |-  ( ph  ->  S  C_  ( Base `  W ) )
86, 7ssexd 4169 . . . . 5  |-  ( ph  ->  S  e.  _V )
9 ressex 12683 . . . . 5  |-  ( ( W  e.  X  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
101, 8, 9syl2anc 411 . . . 4  |-  ( ph  ->  ( Ws  S )  e.  _V )
11 sralemg.1 . . . . 5  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
12 sralem.2 . . . . . 6  |-  (Scalar `  ndx )  =/=  ( E `  ndx )
1312necomi 2449 . . . . 5  |-  ( E `
 ndx )  =/=  (Scalar `  ndx )
14 scaslid 12770 . . . . . 6  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
1514simpri 113 . . . . 5  |-  (Scalar `  ndx )  e.  NN
1611, 13, 15setsslnid 12670 . . . 4  |-  ( ( W  e.  X  /\  ( Ws  S )  e.  _V )  ->  ( E `  W )  =  ( E `  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
) )
171, 10, 16syl2anc 411 . . 3  |-  ( ph  ->  ( E `  W
)  =  ( E `
 ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
) )
1815a1i 9 . . . . 5  |-  ( ph  ->  (Scalar `  ndx )  e.  NN )
19 setsex 12650 . . . . 5  |-  ( ( W  e.  X  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
201, 18, 10, 19syl3anc 1249 . . . 4  |-  ( ph  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
21 mulrslid 12749 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2221slotex 12645 . . . . 5  |-  ( W  e.  X  ->  ( .r `  W )  e. 
_V )
231, 22syl 14 . . . 4  |-  ( ph  ->  ( .r `  W
)  e.  _V )
24 sralem.3 . . . . . 6  |-  ( .s
`  ndx )  =/=  ( E `  ndx )
2524necomi 2449 . . . . 5  |-  ( E `
 ndx )  =/=  ( .s `  ndx )
26 vscaslid 12780 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
2726simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
2811, 25, 27setsslnid 12670 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  ( E `  ( W sSet  <.
(Scalar `  ndx ) ,  ( Ws  S ) >. )
)  =  ( E `
 ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
) )
2920, 23, 28syl2anc 411 . . 3  |-  ( ph  ->  ( E `  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) )  =  ( E `  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) ) )
3027a1i 9 . . . . 5  |-  ( ph  ->  ( .s `  ndx )  e.  NN )
31 setsex 12650 . . . . 5  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
3220, 30, 23, 31syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
33 sralem.4 . . . . . 6  |-  ( .i
`  ndx )  =/=  ( E `  ndx )
3433necomi 2449 . . . . 5  |-  ( E `
 ndx )  =/=  ( .i `  ndx )
35 ipslid 12788 . . . . . 6  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
3635simpri 113 . . . . 5  |-  ( .i
`  ndx )  e.  NN
3711, 34, 36setsslnid 12670 . . . 4  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  ( E `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) )  =  ( E `  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
3832, 23, 37syl2anc 411 . . 3  |-  ( ph  ->  ( E `  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) )  =  ( E `  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
3917, 29, 383eqtrd 2230 . 2  |-  ( ph  ->  ( E `  W
)  =  ( E `
 ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
40 srapart.a . . . 4  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
41 sraval 13933 . . . . 5  |-  ( ( W  e.  X  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
421, 7, 41syl2anc 411 . . . 4  |-  ( ph  ->  ( (subringAlg  `  W ) `
 S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
4340, 42eqtrd 2226 . . 3  |-  ( ph  ->  A  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
4443fveq2d 5558 . 2  |-  ( ph  ->  ( E `  A
)  =  ( E `
 ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
4539, 44eqtr4d 2229 1  |-  ( ph  ->  ( E `  W
)  =  ( E `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   _Vcvv 2760    C_ wss 3153   <.cop 3621    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   NNcn 8982   ndxcnx 12615   sSet csts 12616  Slot cslot 12617   Basecbs 12618   ↾s cress 12619   .rcmulr 12696  Scalarcsca 12698   .scvsca 12699   .icip 12700  subringAlg csra 13929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-sra 13931
This theorem is referenced by:  srabaseg  13935  sraaddgg  13936  sramulrg  13937  sratsetg  13941  sradsg  13944
  Copyright terms: Public domain W3C validator