Step | Hyp | Ref
| Expression |
1 | | srapart.ex |
. . . 4
β’ (π β π β π) |
2 | | basfn 12523 |
. . . . . . 7
β’ Base Fn
V |
3 | 1 | elexd 2752 |
. . . . . . 7
β’ (π β π β V) |
4 | | funfvex 5534 |
. . . . . . . 8
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
5 | 4 | funfni 5318 |
. . . . . . 7
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
6 | 2, 3, 5 | sylancr 414 |
. . . . . 6
β’ (π β (Baseβπ) β V) |
7 | | srapart.s |
. . . . . 6
β’ (π β π β (Baseβπ)) |
8 | 6, 7 | ssexd 4145 |
. . . . 5
β’ (π β π β V) |
9 | | ressex 12528 |
. . . . 5
β’ ((π β π β§ π β V) β (π βΎs π) β V) |
10 | 1, 8, 9 | syl2anc 411 |
. . . 4
β’ (π β (π βΎs π) β V) |
11 | | sralemg.1 |
. . . . 5
β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) |
12 | | sralem.2 |
. . . . . 6
β’
(Scalarβndx) β (πΈβndx) |
13 | 12 | necomi 2432 |
. . . . 5
β’ (πΈβndx) β
(Scalarβndx) |
14 | | scaslid 12614 |
. . . . . 6
β’ (Scalar =
Slot (Scalarβndx) β§ (Scalarβndx) β
β) |
15 | 14 | simpri 113 |
. . . . 5
β’
(Scalarβndx) β β |
16 | 11, 13, 15 | setsslnid 12517 |
. . . 4
β’ ((π β π β§ (π βΎs π) β V) β (πΈβπ) = (πΈβ(π sSet β¨(Scalarβndx), (π βΎs π)β©))) |
17 | 1, 10, 16 | syl2anc 411 |
. . 3
β’ (π β (πΈβπ) = (πΈβ(π sSet β¨(Scalarβndx), (π βΎs π)β©))) |
18 | 15 | a1i 9 |
. . . . 5
β’ (π β (Scalarβndx) β
β) |
19 | | setsex 12497 |
. . . . 5
β’ ((π β π β§ (Scalarβndx) β β
β§ (π
βΎs π)
β V) β (π sSet
β¨(Scalarβndx), (π βΎs π)β©) β V) |
20 | 1, 18, 10, 19 | syl3anc 1238 |
. . . 4
β’ (π β (π sSet β¨(Scalarβndx), (π βΎs π)β©) β
V) |
21 | | mulrslid 12593 |
. . . . . 6
β’
(.r = Slot (.rβndx) β§
(.rβndx) β β) |
22 | 21 | slotex 12492 |
. . . . 5
β’ (π β π β (.rβπ) β V) |
23 | 1, 22 | syl 14 |
. . . 4
β’ (π β (.rβπ) β V) |
24 | | sralem.3 |
. . . . . 6
β’ (
Β·π βndx) β (πΈβndx) |
25 | 24 | necomi 2432 |
. . . . 5
β’ (πΈβndx) β (
Β·π βndx) |
26 | | vscaslid 12624 |
. . . . . 6
β’ (
Β·π = Slot (
Β·π βndx) β§ (
Β·π βndx) β
β) |
27 | 26 | simpri 113 |
. . . . 5
β’ (
Β·π βndx) β β |
28 | 11, 25, 27 | setsslnid 12517 |
. . . 4
β’ (((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) β V β§
(.rβπ)
β V) β (πΈβ(π sSet β¨(Scalarβndx), (π βΎs π)β©)) = (πΈβ((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©))) |
29 | 20, 23, 28 | syl2anc 411 |
. . 3
β’ (π β (πΈβ(π sSet β¨(Scalarβndx), (π βΎs π)β©)) = (πΈβ((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©))) |
30 | 27 | a1i 9 |
. . . . 5
β’ (π β (
Β·π βndx) β
β) |
31 | | setsex 12497 |
. . . . 5
β’ (((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) β V β§ (
Β·π βndx) β β β§
(.rβπ)
β V) β ((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β
V) |
32 | 20, 30, 23, 31 | syl3anc 1238 |
. . . 4
β’ (π β ((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β
V) |
33 | | sralem.4 |
. . . . . 6
β’
(Β·πβndx) β (πΈβndx) |
34 | 33 | necomi 2432 |
. . . . 5
β’ (πΈβndx) β
(Β·πβndx) |
35 | | ipslid 12632 |
. . . . . 6
β’
(Β·π = Slot
(Β·πβndx) β§
(Β·πβndx) β
β) |
36 | 35 | simpri 113 |
. . . . 5
β’
(Β·πβndx) β
β |
37 | 11, 34, 36 | setsslnid 12517 |
. . . 4
β’ ((((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β V β§
(.rβπ)
β V) β (πΈβ((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©)) = (πΈβ(((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
38 | 32, 23, 37 | syl2anc 411 |
. . 3
β’ (π β (πΈβ((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©)) = (πΈβ(((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
39 | 17, 29, 38 | 3eqtrd 2214 |
. 2
β’ (π β (πΈβπ) = (πΈβ(((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
40 | | srapart.a |
. . . 4
β’ (π β π΄ = ((subringAlg βπ)βπ)) |
41 | | sraval 13562 |
. . . . 5
β’ ((π β π β§ π β (Baseβπ)) β ((subringAlg βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
42 | 1, 7, 41 | syl2anc 411 |
. . . 4
β’ (π β ((subringAlg βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
43 | 40, 42 | eqtrd 2210 |
. . 3
β’ (π β π΄ = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
44 | 43 | fveq2d 5521 |
. 2
β’ (π β (πΈβπ΄) = (πΈβ(((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
45 | 39, 44 | eqtr4d 2213 |
1
β’ (π β (πΈβπ) = (πΈβπ΄)) |