ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sralemg GIF version

Theorem sralemg 14171
Description: Lemma for srabaseg 14172 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
srapart.ex (𝜑𝑊𝑋)
sralemg.1 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
sralem.2 (Scalar‘ndx) ≠ (𝐸‘ndx)
sralem.3 ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx)
sralem.4 (·𝑖‘ndx) ≠ (𝐸‘ndx)
Assertion
Ref Expression
sralemg (𝜑 → (𝐸𝑊) = (𝐸𝐴))

Proof of Theorem sralemg
StepHypRef Expression
1 srapart.ex . . . 4 (𝜑𝑊𝑋)
2 basfn 12861 . . . . . . 7 Base Fn V
31elexd 2784 . . . . . . 7 (𝜑𝑊 ∈ V)
4 funfvex 5592 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
54funfni 5375 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
62, 3, 5sylancr 414 . . . . . 6 (𝜑 → (Base‘𝑊) ∈ V)
7 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
86, 7ssexd 4183 . . . . 5 (𝜑𝑆 ∈ V)
9 ressex 12868 . . . . 5 ((𝑊𝑋𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
101, 8, 9syl2anc 411 . . . 4 (𝜑 → (𝑊s 𝑆) ∈ V)
11 sralemg.1 . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
12 sralem.2 . . . . . 6 (Scalar‘ndx) ≠ (𝐸‘ndx)
1312necomi 2460 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
14 scaslid 12956 . . . . . 6 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
1514simpri 113 . . . . 5 (Scalar‘ndx) ∈ ℕ
1611, 13, 15setsslnid 12855 . . . 4 ((𝑊𝑋 ∧ (𝑊s 𝑆) ∈ V) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
171, 10, 16syl2anc 411 . . 3 (𝜑 → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
1815a1i 9 . . . . 5 (𝜑 → (Scalar‘ndx) ∈ ℕ)
19 setsex 12835 . . . . 5 ((𝑊𝑋 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
201, 18, 10, 19syl3anc 1249 . . . 4 (𝜑 → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
21 mulrslid 12935 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2221slotex 12830 . . . . 5 (𝑊𝑋 → (.r𝑊) ∈ V)
231, 22syl 14 . . . 4 (𝜑 → (.r𝑊) ∈ V)
24 sralem.3 . . . . . 6 ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx)
2524necomi 2460 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
26 vscaslid 12966 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
2726simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
2811, 25, 27setsslnid 12855 . . . 4 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
2920, 23, 28syl2anc 411 . . 3 (𝜑 → (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
3027a1i 9 . . . . 5 (𝜑 → ( ·𝑠 ‘ndx) ∈ ℕ)
31 setsex 12835 . . . . 5 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
3220, 30, 23, 31syl3anc 1249 . . . 4 (𝜑 → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
33 sralem.4 . . . . . 6 (·𝑖‘ndx) ≠ (𝐸‘ndx)
3433necomi 2460 . . . . 5 (𝐸‘ndx) ≠ (·𝑖‘ndx)
35 ipslid 12974 . . . . . 6 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
3635simpri 113 . . . . 5 (·𝑖‘ndx) ∈ ℕ
3711, 34, 36setsslnid 12855 . . . 4 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
3832, 23, 37syl2anc 411 . . 3 (𝜑 → (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
3917, 29, 383eqtrd 2241 . 2 (𝜑 → (𝐸𝑊) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
40 srapart.a . . . 4 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
41 sraval 14170 . . . . 5 ((𝑊𝑋𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
421, 7, 41syl2anc 411 . . . 4 (𝜑 → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
4340, 42eqtrd 2237 . . 3 (𝜑𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
4443fveq2d 5579 . 2 (𝜑 → (𝐸𝐴) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
4539, 44eqtr4d 2240 1 (𝜑 → (𝐸𝑊) = (𝐸𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wne 2375  Vcvv 2771  wss 3165  cop 3635   Fn wfn 5265  cfv 5270  (class class class)co 5943  cn 9035  ndxcnx 12800   sSet csts 12801  Slot cslot 12802  Basecbs 12803  s cress 12804  .rcmulr 12881  Scalarcsca 12883   ·𝑠 cvsca 12884  ·𝑖cip 12885  subringAlg csra 14166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-mulr 12894  df-sca 12896  df-vsca 12897  df-ip 12898  df-sra 14168
This theorem is referenced by:  srabaseg  14172  sraaddgg  14173  sramulrg  14174  sratsetg  14178  sradsg  14181
  Copyright terms: Public domain W3C validator