ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sralemg GIF version

Theorem sralemg 13937
Description: Lemma for srabaseg 13938 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
srapart.ex (𝜑𝑊𝑋)
sralemg.1 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
sralem.2 (Scalar‘ndx) ≠ (𝐸‘ndx)
sralem.3 ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx)
sralem.4 (·𝑖‘ndx) ≠ (𝐸‘ndx)
Assertion
Ref Expression
sralemg (𝜑 → (𝐸𝑊) = (𝐸𝐴))

Proof of Theorem sralemg
StepHypRef Expression
1 srapart.ex . . . 4 (𝜑𝑊𝑋)
2 basfn 12679 . . . . . . 7 Base Fn V
31elexd 2773 . . . . . . 7 (𝜑𝑊 ∈ V)
4 funfvex 5572 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
54funfni 5355 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
62, 3, 5sylancr 414 . . . . . 6 (𝜑 → (Base‘𝑊) ∈ V)
7 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
86, 7ssexd 4170 . . . . 5 (𝜑𝑆 ∈ V)
9 ressex 12686 . . . . 5 ((𝑊𝑋𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
101, 8, 9syl2anc 411 . . . 4 (𝜑 → (𝑊s 𝑆) ∈ V)
11 sralemg.1 . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
12 sralem.2 . . . . . 6 (Scalar‘ndx) ≠ (𝐸‘ndx)
1312necomi 2449 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
14 scaslid 12773 . . . . . 6 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
1514simpri 113 . . . . 5 (Scalar‘ndx) ∈ ℕ
1611, 13, 15setsslnid 12673 . . . 4 ((𝑊𝑋 ∧ (𝑊s 𝑆) ∈ V) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
171, 10, 16syl2anc 411 . . 3 (𝜑 → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
1815a1i 9 . . . . 5 (𝜑 → (Scalar‘ndx) ∈ ℕ)
19 setsex 12653 . . . . 5 ((𝑊𝑋 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
201, 18, 10, 19syl3anc 1249 . . . 4 (𝜑 → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
21 mulrslid 12752 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2221slotex 12648 . . . . 5 (𝑊𝑋 → (.r𝑊) ∈ V)
231, 22syl 14 . . . 4 (𝜑 → (.r𝑊) ∈ V)
24 sralem.3 . . . . . 6 ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx)
2524necomi 2449 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
26 vscaslid 12783 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
2726simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
2811, 25, 27setsslnid 12673 . . . 4 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
2920, 23, 28syl2anc 411 . . 3 (𝜑 → (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
3027a1i 9 . . . . 5 (𝜑 → ( ·𝑠 ‘ndx) ∈ ℕ)
31 setsex 12653 . . . . 5 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
3220, 30, 23, 31syl3anc 1249 . . . 4 (𝜑 → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
33 sralem.4 . . . . . 6 (·𝑖‘ndx) ≠ (𝐸‘ndx)
3433necomi 2449 . . . . 5 (𝐸‘ndx) ≠ (·𝑖‘ndx)
35 ipslid 12791 . . . . . 6 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
3635simpri 113 . . . . 5 (·𝑖‘ndx) ∈ ℕ
3711, 34, 36setsslnid 12673 . . . 4 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
3832, 23, 37syl2anc 411 . . 3 (𝜑 → (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
3917, 29, 383eqtrd 2230 . 2 (𝜑 → (𝐸𝑊) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
40 srapart.a . . . 4 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
41 sraval 13936 . . . . 5 ((𝑊𝑋𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
421, 7, 41syl2anc 411 . . . 4 (𝜑 → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
4340, 42eqtrd 2226 . . 3 (𝜑𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
4443fveq2d 5559 . 2 (𝜑 → (𝐸𝐴) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
4539, 44eqtr4d 2229 1 (𝜑 → (𝐸𝑊) = (𝐸𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wne 2364  Vcvv 2760  wss 3154  cop 3622   Fn wfn 5250  cfv 5255  (class class class)co 5919  cn 8984  ndxcnx 12618   sSet csts 12619  Slot cslot 12620  Basecbs 12621  s cress 12622  .rcmulr 12699  Scalarcsca 12701   ·𝑠 cvsca 12702  ·𝑖cip 12703  subringAlg csra 13932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-sra 13934
This theorem is referenced by:  srabaseg  13938  sraaddgg  13939  sramulrg  13940  sratsetg  13944  sradsg  13947
  Copyright terms: Public domain W3C validator