![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ib | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5ib.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5ib.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5ib |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ib.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl5ib.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpd 143 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl5 32 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl5ibcom 154 syl5ibr 155 sbft 1787 gencl 2673 spsbc 2873 prexg 4071 posng 4549 sosng 4550 optocl 4553 relcnvexb 5014 funimass1 5136 dmfex 5248 f1ocnvb 5315 eqfnfv2 5451 elpreima 5471 dff13 5601 f1ocnvfv 5612 f1ocnvfvb 5613 fliftfun 5629 eusvobj2 5692 mpoxopn0yelv 6066 rntpos 6084 erexb 6384 findcard2 6712 findcard2s 6713 xpfi 6747 sbthlemi3 6775 enq0tr 7143 addnqprllem 7236 addnqprulem 7237 distrlem1prl 7291 distrlem1pru 7292 recexprlem1ssl 7342 recexprlem1ssu 7343 elrealeu 7517 addcan 7813 addcan2 7814 neg11 7884 negreb 7898 mulcanapd 8283 receuap 8291 cju 8577 nn1suc 8597 nnaddcl 8598 nndivtr 8620 znegclb 8939 zaddcllempos 8943 zmulcl 8959 zeo 9008 uz11 9198 uzp1 9209 eqreznegel 9256 xneg11 9458 xnegdi 9492 modqadd1 9975 modqmul1 9991 frec2uzltd 10017 bccmpl 10341 fz1eqb 10378 cj11 10518 rennim 10614 resqrexlemgt0 10632 efne0 11182 dvdsabseq 11340 uptx 12224 tgioo 12465 bj-prexg 12690 strcollnft 12767 |
Copyright terms: Public domain | W3C validator |