ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uhgrvtxedgiedgb Unicode version

Theorem uhgrvtxedgiedgb 15817
Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
uhgrvtxedgiedgb.i  |-  I  =  (iEdg `  G )
uhgrvtxedgiedgb.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
uhgrvtxedgiedgb  |-  ( ( G  e. UHGraph  /\  U  e.  V )  ->  ( E. i  e.  dom  I  U  e.  (
I `  i )  <->  E. e  e.  E  U  e.  e ) )
Distinct variable groups:    e, E    e, I, i    U, e, i
Allowed substitution hints:    E( i)    G( e, i)    V( e, i)

Proof of Theorem uhgrvtxedgiedgb
StepHypRef Expression
1 edgvalg 15741 . . . . . 6  |-  ( G  e. UHGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
2 uhgrvtxedgiedgb.e . . . . . 6  |-  E  =  (Edg `  G )
3 uhgrvtxedgiedgb.i . . . . . . 7  |-  I  =  (iEdg `  G )
43rneqi 4920 . . . . . 6  |-  ran  I  =  ran  (iEdg `  G
)
51, 2, 43eqtr4g 2264 . . . . 5  |-  ( G  e. UHGraph  ->  E  =  ran  I )
65rexeqdv 2710 . . . 4  |-  ( G  e. UHGraph  ->  ( E. e  e.  E  U  e.  e 
<->  E. e  e.  ran  I  U  e.  e
) )
73uhgrfun 15758 . . . . . 6  |-  ( G  e. UHGraph  ->  Fun  I )
87funfnd 5316 . . . . 5  |-  ( G  e. UHGraph  ->  I  Fn  dom  I )
9 eleq2 2270 . . . . . 6  |-  ( e  =  ( I `  i )  ->  ( U  e.  e  <->  U  e.  ( I `  i
) ) )
109rexrn 5735 . . . . 5  |-  ( I  Fn  dom  I  -> 
( E. e  e. 
ran  I  U  e.  e  <->  E. i  e.  dom  I  U  e.  (
I `  i )
) )
118, 10syl 14 . . . 4  |-  ( G  e. UHGraph  ->  ( E. e  e.  ran  I  U  e.  e  <->  E. i  e.  dom  I  U  e.  (
I `  i )
) )
126, 11bitrd 188 . . 3  |-  ( G  e. UHGraph  ->  ( E. e  e.  E  U  e.  e 
<->  E. i  e.  dom  I  U  e.  (
I `  i )
) )
1312adantr 276 . 2  |-  ( ( G  e. UHGraph  /\  U  e.  V )  ->  ( E. e  e.  E  U  e.  e  <->  E. i  e.  dom  I  U  e.  ( I `  i
) ) )
1413bicomd 141 1  |-  ( ( G  e. UHGraph  /\  U  e.  V )  ->  ( E. i  e.  dom  I  U  e.  (
I `  i )  <->  E. e  e.  E  U  e.  e ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   E.wrex 2486   dom cdm 4688   ran crn 4689    Fn wfn 5280   ` cfv 5285  iEdgciedg 15697  Edgcedg 15739  UHGraphcuhgr 15748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fo 5291  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-sub 8275  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-9 9132  df-n0 9326  df-dec 9535  df-ndx 12920  df-slot 12921  df-base 12923  df-edgf 15689  df-vtx 15698  df-iedg 15699  df-edg 15740  df-uhgrm 15750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator