ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgredg Unicode version

Theorem upgredg 15818
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v  |-  V  =  (Vtx `  G )
upgredg.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
upgredg  |-  ( ( G  e. UPGraph  /\  C  e.  E )  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
Distinct variable groups:    C, a, b    G, a, b    V, a, b
Allowed substitution hints:    E( a, b)

Proof of Theorem upgredg
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.e . . . . 5  |-  E  =  (Edg `  G )
2 edgvalg 15741 . . . . 5  |-  ( G  e. UPGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
31, 2eqtrid 2251 . . . 4  |-  ( G  e. UPGraph  ->  E  =  ran  (iEdg `  G ) )
43eleq2d 2276 . . 3  |-  ( G  e. UPGraph  ->  ( C  e.  E  <->  C  e.  ran  (iEdg `  G ) ) )
54biimpa 296 . 2  |-  ( ( G  e. UPGraph  /\  C  e.  E )  ->  C  e.  ran  (iEdg `  G
) )
6 upgredg.v . . . . . . . 8  |-  V  =  (Vtx `  G )
7 eqid 2206 . . . . . . . 8  |-  (iEdg `  G )  =  (iEdg `  G )
86, 7upgrfen 15778 . . . . . . 7  |-  ( G  e. UPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )
98ffnd 5441 . . . . . 6  |-  ( G  e. UPGraph  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
109adantr 276 . . . . 5  |-  ( ( G  e. UPGraph  /\  C  e. 
ran  (iEdg `  G )
)  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
11 fnfun 5385 . . . . 5  |-  ( (iEdg `  G )  Fn  dom  (iEdg `  G )  ->  Fun  (iEdg `  G )
)
1210, 11syl 14 . . . 4  |-  ( ( G  e. UPGraph  /\  C  e. 
ran  (iEdg `  G )
)  ->  Fun  (iEdg `  G ) )
13 simpr 110 . . . 4  |-  ( ( G  e. UPGraph  /\  C  e. 
ran  (iEdg `  G )
)  ->  C  e.  ran  (iEdg `  G )
)
14 elrnrexdm 5737 . . . 4  |-  ( Fun  (iEdg `  G )  ->  ( C  e.  ran  (iEdg `  G )  ->  E. z  e.  dom  (iEdg `  G ) C  =  ( (iEdg `  G ) `  z
) ) )
1512, 13, 14sylc 62 . . 3  |-  ( ( G  e. UPGraph  /\  C  e. 
ran  (iEdg `  G )
)  ->  E. z  e.  dom  (iEdg `  G
) C  =  ( (iEdg `  G ) `  z ) )
16 simpll 527 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  ->  G  e. UPGraph )
1716, 9syl 14 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  -> 
(iEdg `  G )  Fn  dom  (iEdg `  G
) )
18 simprl 529 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  -> 
z  e.  dom  (iEdg `  G ) )
196, 7upgrex 15784 . . . . 5  |-  ( ( G  e. UPGraph  /\  (iEdg `  G )  Fn  dom  (iEdg `  G )  /\  z  e.  dom  (iEdg `  G ) )  ->  E. a  e.  V  E. b  e.  V  ( (iEdg `  G ) `  z )  =  {
a ,  b } )
2016, 17, 18, 19syl3anc 1250 . . . 4  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  ->  E. a  e.  V  E. b  e.  V  ( (iEdg `  G ) `  z )  =  {
a ,  b } )
21 simprr 531 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  ->  C  =  ( (iEdg `  G ) `  z
) )
2221eqeq1d 2215 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  -> 
( C  =  {
a ,  b }  <-> 
( (iEdg `  G
) `  z )  =  { a ,  b } ) )
23222rexbidv 2532 . . . 4  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  -> 
( E. a  e.  V  E. b  e.  V  C  =  {
a ,  b }  <->  E. a  e.  V  E. b  e.  V  ( (iEdg `  G ) `  z )  =  {
a ,  b } ) )
2420, 23mpbird 167 . . 3  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
2515, 24rexlimddv 2629 . 2  |-  ( ( G  e. UPGraph  /\  C  e. 
ran  (iEdg `  G )
)  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
265, 25syldan 282 1  |-  ( ( G  e. UPGraph  /\  C  e.  E )  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2177   E.wrex 2486   {crab 2489   ~Pcpw 3621   {cpr 3639   class class class wbr 4054   dom cdm 4688   ran crn 4689   Fun wfun 5279    Fn wfn 5280   ` cfv 5285   1oc1o 6513   2oc2o 6514    ~~ cen 6843  Vtxcvtx 15696  iEdgciedg 15697  Edgcedg 15739  UPGraphcupgr 15772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-1o 6520  df-2o 6521  df-en 6846  df-sub 8275  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-9 9132  df-n0 9326  df-dec 9535  df-ndx 12920  df-slot 12921  df-base 12923  df-edgf 15689  df-vtx 15698  df-iedg 15699  df-edg 15740  df-upgren 15774
This theorem is referenced by:  upgrpredgv  15820  upgredg2vtx  15822  upgredgpr  15823
  Copyright terms: Public domain W3C validator