ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgredg Unicode version

Theorem upgredg 15936
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v  |-  V  =  (Vtx `  G )
upgredg.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
upgredg  |-  ( ( G  e. UPGraph  /\  C  e.  E )  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
Distinct variable groups:    C, a, b    G, a, b    V, a, b
Allowed substitution hints:    E( a, b)

Proof of Theorem upgredg
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.e . . . . 5  |-  E  =  (Edg `  G )
2 edgvalg 15854 . . . . 5  |-  ( G  e. UPGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
31, 2eqtrid 2274 . . . 4  |-  ( G  e. UPGraph  ->  E  =  ran  (iEdg `  G ) )
43eleq2d 2299 . . 3  |-  ( G  e. UPGraph  ->  ( C  e.  E  <->  C  e.  ran  (iEdg `  G ) ) )
54biimpa 296 . 2  |-  ( ( G  e. UPGraph  /\  C  e.  E )  ->  C  e.  ran  (iEdg `  G
) )
6 upgredg.v . . . . . . . 8  |-  V  =  (Vtx `  G )
7 eqid 2229 . . . . . . . 8  |-  (iEdg `  G )  =  (iEdg `  G )
86, 7upgrfen 15891 . . . . . . 7  |-  ( G  e. UPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )
98ffnd 5473 . . . . . 6  |-  ( G  e. UPGraph  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
109adantr 276 . . . . 5  |-  ( ( G  e. UPGraph  /\  C  e. 
ran  (iEdg `  G )
)  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
11 fnfun 5417 . . . . 5  |-  ( (iEdg `  G )  Fn  dom  (iEdg `  G )  ->  Fun  (iEdg `  G )
)
1210, 11syl 14 . . . 4  |-  ( ( G  e. UPGraph  /\  C  e. 
ran  (iEdg `  G )
)  ->  Fun  (iEdg `  G ) )
13 simpr 110 . . . 4  |-  ( ( G  e. UPGraph  /\  C  e. 
ran  (iEdg `  G )
)  ->  C  e.  ran  (iEdg `  G )
)
14 elrnrexdm 5773 . . . 4  |-  ( Fun  (iEdg `  G )  ->  ( C  e.  ran  (iEdg `  G )  ->  E. z  e.  dom  (iEdg `  G ) C  =  ( (iEdg `  G ) `  z
) ) )
1512, 13, 14sylc 62 . . 3  |-  ( ( G  e. UPGraph  /\  C  e. 
ran  (iEdg `  G )
)  ->  E. z  e.  dom  (iEdg `  G
) C  =  ( (iEdg `  G ) `  z ) )
16 simpll 527 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  ->  G  e. UPGraph )
1716, 9syl 14 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  -> 
(iEdg `  G )  Fn  dom  (iEdg `  G
) )
18 simprl 529 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  -> 
z  e.  dom  (iEdg `  G ) )
196, 7upgrex 15897 . . . . 5  |-  ( ( G  e. UPGraph  /\  (iEdg `  G )  Fn  dom  (iEdg `  G )  /\  z  e.  dom  (iEdg `  G ) )  ->  E. a  e.  V  E. b  e.  V  ( (iEdg `  G ) `  z )  =  {
a ,  b } )
2016, 17, 18, 19syl3anc 1271 . . . 4  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  ->  E. a  e.  V  E. b  e.  V  ( (iEdg `  G ) `  z )  =  {
a ,  b } )
21 simprr 531 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  ->  C  =  ( (iEdg `  G ) `  z
) )
2221eqeq1d 2238 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  -> 
( C  =  {
a ,  b }  <-> 
( (iEdg `  G
) `  z )  =  { a ,  b } ) )
23222rexbidv 2555 . . . 4  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  -> 
( E. a  e.  V  E. b  e.  V  C  =  {
a ,  b }  <->  E. a  e.  V  E. b  e.  V  ( (iEdg `  G ) `  z )  =  {
a ,  b } ) )
2420, 23mpbird 167 . . 3  |-  ( ( ( G  e. UPGraph  /\  C  e.  ran  (iEdg `  G
) )  /\  (
z  e.  dom  (iEdg `  G )  /\  C  =  ( (iEdg `  G ) `  z
) ) )  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
2515, 24rexlimddv 2653 . 2  |-  ( ( G  e. UPGraph  /\  C  e. 
ran  (iEdg `  G )
)  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
265, 25syldan 282 1  |-  ( ( G  e. UPGraph  /\  C  e.  E )  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   E.wrex 2509   {crab 2512   ~Pcpw 3649   {cpr 3667   class class class wbr 4082   dom cdm 4718   ran crn 4719   Fun wfun 5311    Fn wfn 5312   ` cfv 5317   1oc1o 6553   2oc2o 6554    ~~ cen 6883  Vtxcvtx 15807  iEdgciedg 15808  Edgcedg 15852  UPGraphcupgr 15885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-2o 6561  df-en 6886  df-sub 8315  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-dec 9575  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-vtx 15809  df-iedg 15810  df-edg 15853  df-upgren 15887
This theorem is referenced by:  upgrpredgv  15938  upgredg2vtx  15940  upgredgpr  15941
  Copyright terms: Public domain W3C validator