| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > edgvalg | Unicode version | ||
| Description: The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edgvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-edg 15853 |
. 2
| |
| 2 | fveq2 5626 |
. . 3
| |
| 3 | 2 | rneqd 4952 |
. 2
|
| 4 | elex 2811 |
. 2
| |
| 5 | iedgvalg 15812 |
. . . 4
| |
| 6 | 2ndexg 6312 |
. . . . 5
| |
| 7 | edgfid 15801 |
. . . . . . 7
| |
| 8 | edgfndxnn 15803 |
. . . . . . 7
| |
| 9 | 7, 8 | ndxslid 13052 |
. . . . . 6
|
| 10 | 9 | slotex 13054 |
. . . . 5
|
| 11 | 6, 10 | ifexd 4574 |
. . . 4
|
| 12 | 5, 11 | eqeltrd 2306 |
. . 3
|
| 13 | rnexg 4988 |
. . 3
| |
| 14 | 12, 13 | syl 14 |
. 2
|
| 15 | 1, 3, 4, 14 | fvmptd3 5727 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-2nd 6285 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 df-ndx 13030 df-slot 13031 df-edgf 15800 df-iedg 15810 df-edg 15853 |
| This theorem is referenced by: iedgedgg 15855 edgiedgbg 15859 edg0iedg0g 15860 uhgredgm 15928 upgredgssen 15931 umgredgssen 15932 edgupgren 15933 edgumgren 15934 uhgrvtxedgiedgb 15935 upgredg 15936 usgredgssen 15954 usgrausgrien 15961 ausgrumgrien 15962 ausgrusgrien 15963 uspgrf1oedg 15968 uspgrupgrushgr 15974 usgrumgruspgr 15977 usgruspgrben 15978 usgrf1oedg 15997 uhgr2edg 15998 usgrsizedgen 16005 usgredg3 16006 ushgredgedg 16018 ushgredgedgloop 16020 |
| Copyright terms: Public domain | W3C validator |