ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetsym GIF version

Theorem xmetsym 13008
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetsym ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))

Proof of Theorem xmetsym
StepHypRef Expression
1 simp1 987 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 simp3 989 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
3 simp2 988 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
4 xmettri2 13001 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)))
51, 2, 3, 2, 4syl13anc 1230 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)))
6 xmet0 13003 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
763adant2 1006 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 0)
87oveq2d 5858 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = ((𝐵𝐷𝐴) +𝑒 0))
9 xmetcl 12992 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) ∈ ℝ*)
10 xaddid1 9798 . . . . . 6 ((𝐵𝐷𝐴) ∈ ℝ* → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
119, 10syl 14 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
12113com23 1199 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
138, 12eqtrd 2198 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = (𝐵𝐷𝐴))
145, 13breqtrd 4008 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴))
15 xmettri2 13001 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑋)) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)))
161, 3, 2, 3, 15syl13anc 1230 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)))
17 xmet0 13003 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
18173adant3 1007 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐴) = 0)
1918oveq2d 5858 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
20 xmetcl 12992 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
21 xaddid1 9798 . . . . 5 ((𝐴𝐷𝐵) ∈ ℝ* → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
2220, 21syl 14 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
2319, 22eqtrd 2198 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = (𝐴𝐷𝐵))
2416, 23breqtrd 4008 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))
2593com23 1199 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ∈ ℝ*)
26 xrletri3 9740 . . 3 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐵𝐷𝐴) ∈ ℝ*) → ((𝐴𝐷𝐵) = (𝐵𝐷𝐴) ↔ ((𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴) ∧ (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))))
2720, 25, 26syl2anc 409 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = (𝐵𝐷𝐴) ↔ ((𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴) ∧ (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))))
2814, 24, 27mpbir2and 934 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  0cc0 7753  *cxr 7932  cle 7934   +𝑒 cxad 9706  ∞Metcxmet 12620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-apti 7868
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-xadd 9709  df-xmet 12628
This theorem is referenced by:  xmettpos  13010  metsym  13011  xmettri  13012  xmettri3  13014  elbl3  13035  blss  13068  xmeter  13076  xmssym  13109  metcnp2  13153
  Copyright terms: Public domain W3C validator