ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetsym GIF version

Theorem xmetsym 14536
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetsym ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))

Proof of Theorem xmetsym
StepHypRef Expression
1 simp1 999 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 simp3 1001 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
3 simp2 1000 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
4 xmettri2 14529 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)))
51, 2, 3, 2, 4syl13anc 1251 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)))
6 xmet0 14531 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
763adant2 1018 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 0)
87oveq2d 5934 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = ((𝐵𝐷𝐴) +𝑒 0))
9 xmetcl 14520 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) ∈ ℝ*)
10 xaddid1 9928 . . . . . 6 ((𝐵𝐷𝐴) ∈ ℝ* → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
119, 10syl 14 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
12113com23 1211 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
138, 12eqtrd 2226 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = (𝐵𝐷𝐴))
145, 13breqtrd 4055 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴))
15 xmettri2 14529 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑋)) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)))
161, 3, 2, 3, 15syl13anc 1251 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)))
17 xmet0 14531 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
18173adant3 1019 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐴) = 0)
1918oveq2d 5934 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
20 xmetcl 14520 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
21 xaddid1 9928 . . . . 5 ((𝐴𝐷𝐵) ∈ ℝ* → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
2220, 21syl 14 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
2319, 22eqtrd 2226 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = (𝐴𝐷𝐵))
2416, 23breqtrd 4055 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))
2593com23 1211 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ∈ ℝ*)
26 xrletri3 9870 . . 3 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐵𝐷𝐴) ∈ ℝ*) → ((𝐴𝐷𝐵) = (𝐵𝐷𝐴) ↔ ((𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴) ∧ (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))))
2720, 25, 26syl2anc 411 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = (𝐵𝐷𝐴) ↔ ((𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴) ∧ (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))))
2814, 24, 27mpbir2and 946 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  0cc0 7872  *cxr 8053  cle 8055   +𝑒 cxad 9836  ∞Metcxmet 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-xadd 9839  df-xmet 14040
This theorem is referenced by:  xmettpos  14538  metsym  14539  xmettri  14540  xmettri3  14542  elbl3  14563  blss  14596  xmeter  14604  xmssym  14637  metcnp2  14681
  Copyright terms: Public domain W3C validator