ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climle Unicode version

Theorem climle 11275
Description: Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climle.5  |-  ( ph  ->  G  ~~>  B )
climle.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climle.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
climle.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
Assertion
Ref Expression
climle  |-  ( ph  ->  A  <_  B )
Distinct variable groups:    B, k    k, F    ph, k    A, k   
k, G    k, M    k, Z

Proof of Theorem climle
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climadd.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 climle.5 . . . 4  |-  ( ph  ->  G  ~~>  B )
4 zex 9200 . . . . . . . 8  |-  ZZ  e.  _V
5 uzssz 9485 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
64, 5ssexi 4120 . . . . . . 7  |-  ( ZZ>= `  M )  e.  _V
71, 6eqeltri 2239 . . . . . 6  |-  Z  e. 
_V
87mptex 5711 . . . . 5  |-  ( j  e.  Z  |->  ( ( G `  j )  -  ( F `  j ) ) )  e.  _V
98a1i 9 . . . 4  |-  ( ph  ->  ( j  e.  Z  |->  ( ( G `  j )  -  ( F `  j )
) )  e.  _V )
10 climadd.4 . . . 4  |-  ( ph  ->  F  ~~>  A )
11 climle.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
1211recnd 7927 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
13 climle.6 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
1413recnd 7927 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
15 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
1611, 13resubcld 8279 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G `  k
)  -  ( F `
 k ) )  e.  RR )
17 fveq2 5486 . . . . . . 7  |-  ( j  =  k  ->  ( G `  j )  =  ( G `  k ) )
18 fveq2 5486 . . . . . . 7  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
1917, 18oveq12d 5860 . . . . . 6  |-  ( j  =  k  ->  (
( G `  j
)  -  ( F `
 j ) )  =  ( ( G `
 k )  -  ( F `  k ) ) )
20 eqid 2165 . . . . . 6  |-  ( j  e.  Z  |->  ( ( G `  j )  -  ( F `  j ) ) )  =  ( j  e.  Z  |->  ( ( G `
 j )  -  ( F `  j ) ) )
2119, 20fvmptg 5562 . . . . 5  |-  ( ( k  e.  Z  /\  ( ( G `  k )  -  ( F `  k )
)  e.  RR )  ->  ( ( j  e.  Z  |->  ( ( G `  j )  -  ( F `  j ) ) ) `
 k )  =  ( ( G `  k )  -  ( F `  k )
) )
2215, 16, 21syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  ( ( G `  j )  -  ( F `  j )
) ) `  k
)  =  ( ( G `  k )  -  ( F `  k ) ) )
231, 2, 3, 9, 10, 12, 14, 22climsub 11269 . . 3  |-  ( ph  ->  ( j  e.  Z  |->  ( ( G `  j )  -  ( F `  j )
) )  ~~>  ( B  -  A ) )
2422, 16eqeltrd 2243 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  ( ( G `  j )  -  ( F `  j )
) ) `  k
)  e.  RR )
25 climle.8 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
2611, 13subge0d 8433 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
0  <_  ( ( G `  k )  -  ( F `  k ) )  <->  ( F `  k )  <_  ( G `  k )
) )
2725, 26mpbird 166 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( ( G `  k )  -  ( F `  k )
) )
2827, 22breqtrrd 4010 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( ( j  e.  Z  |->  ( ( G `
 j )  -  ( F `  j ) ) ) `  k
) )
291, 2, 23, 24, 28climge0 11266 . 2  |-  ( ph  ->  0  <_  ( B  -  A ) )
301, 2, 3, 11climrecl 11265 . . 3  |-  ( ph  ->  B  e.  RR )
311, 2, 10, 13climrecl 11265 . . 3  |-  ( ph  ->  A  e.  RR )
3230, 31subge0d 8433 . 2  |-  ( ph  ->  ( 0  <_  ( B  -  A )  <->  A  <_  B ) )
3329, 32mpbid 146 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982    |-> cmpt 4043   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753    <_ cle 7934    - cmin 8069   ZZcz 9191   ZZ>=cuz 9466    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  climlec2  11282  iserle  11283  iserabs  11416  cvgcmpub  11417
  Copyright terms: Public domain W3C validator