ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climlec2 Unicode version

Theorem climlec2 11652
Description: Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2iser.1  |-  Z  =  ( ZZ>= `  M )
climlec2.2  |-  ( ph  ->  M  e.  ZZ )
climlec2.3  |-  ( ph  ->  A  e.  RR )
climlec2.4  |-  ( ph  ->  F  ~~>  B )
climlec2.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climlec2.6  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  ( F `  k
) )
Assertion
Ref Expression
climlec2  |-  ( ph  ->  A  <_  B )
Distinct variable groups:    A, k    B, k    k, F    k, M    ph, k    k, Z

Proof of Theorem climlec2
StepHypRef Expression
1 clim2iser.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climlec2.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climlec2.3 . . . 4  |-  ( ph  ->  A  e.  RR )
43recnd 8101 . . 3  |-  ( ph  ->  A  e.  CC )
5 0z 9383 . . 3  |-  0  e.  ZZ
6 uzssz 9668 . . . 4  |-  ( ZZ>= ` 
0 )  C_  ZZ
7 zex 9381 . . . 4  |-  ZZ  e.  _V
86, 7climconst2 11602 . . 3  |-  ( ( A  e.  CC  /\  0  e.  ZZ )  ->  ( ZZ  X.  { A } )  ~~>  A )
94, 5, 8sylancl 413 . 2  |-  ( ph  ->  ( ZZ  X.  { A } )  ~~>  A )
10 climlec2.4 . 2  |-  ( ph  ->  F  ~~>  B )
11 eluzelz 9657 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1211, 1eleq2s 2300 . . . 4  |-  ( k  e.  Z  ->  k  e.  ZZ )
13 fvconst2g 5798 . . . 4  |-  ( ( A  e.  RR  /\  k  e.  ZZ )  ->  ( ( ZZ  X.  { A } ) `  k )  =  A )
143, 12, 13syl2an 289 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { A } ) `  k
)  =  A )
153adantr 276 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
1614, 15eqeltrd 2282 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { A } ) `  k
)  e.  RR )
17 climlec2.5 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
18 climlec2.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  ( F `  k
) )
1914, 18eqbrtrd 4066 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { A } ) `  k
)  <_  ( F `  k ) )
201, 2, 9, 10, 16, 17, 19climle 11645 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {csn 3633   class class class wbr 4044    X. cxp 4673   ` cfv 5271   CCcc 7923   RRcr 7924   0cc0 7925    <_ cle 8108   ZZcz 9372   ZZ>=cuz 9648    ~~> cli 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590
This theorem is referenced by:  climub  11655
  Copyright terms: Public domain W3C validator