ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climlec2 Unicode version

Theorem climlec2 11737
Description: Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2iser.1  |-  Z  =  ( ZZ>= `  M )
climlec2.2  |-  ( ph  ->  M  e.  ZZ )
climlec2.3  |-  ( ph  ->  A  e.  RR )
climlec2.4  |-  ( ph  ->  F  ~~>  B )
climlec2.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climlec2.6  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  ( F `  k
) )
Assertion
Ref Expression
climlec2  |-  ( ph  ->  A  <_  B )
Distinct variable groups:    A, k    B, k    k, F    k, M    ph, k    k, Z

Proof of Theorem climlec2
StepHypRef Expression
1 clim2iser.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climlec2.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climlec2.3 . . . 4  |-  ( ph  ->  A  e.  RR )
43recnd 8131 . . 3  |-  ( ph  ->  A  e.  CC )
5 0z 9413 . . 3  |-  0  e.  ZZ
6 uzssz 9698 . . . 4  |-  ( ZZ>= ` 
0 )  C_  ZZ
7 zex 9411 . . . 4  |-  ZZ  e.  _V
86, 7climconst2 11687 . . 3  |-  ( ( A  e.  CC  /\  0  e.  ZZ )  ->  ( ZZ  X.  { A } )  ~~>  A )
94, 5, 8sylancl 413 . 2  |-  ( ph  ->  ( ZZ  X.  { A } )  ~~>  A )
10 climlec2.4 . 2  |-  ( ph  ->  F  ~~>  B )
11 eluzelz 9687 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1211, 1eleq2s 2301 . . . 4  |-  ( k  e.  Z  ->  k  e.  ZZ )
13 fvconst2g 5816 . . . 4  |-  ( ( A  e.  RR  /\  k  e.  ZZ )  ->  ( ( ZZ  X.  { A } ) `  k )  =  A )
143, 12, 13syl2an 289 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { A } ) `  k
)  =  A )
153adantr 276 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
1614, 15eqeltrd 2283 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { A } ) `  k
)  e.  RR )
17 climlec2.5 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
18 climlec2.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  ( F `  k
) )
1914, 18eqbrtrd 4076 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { A } ) `  k
)  <_  ( F `  k ) )
201, 2, 9, 10, 16, 17, 19climle 11730 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   {csn 3638   class class class wbr 4054    X. cxp 4686   ` cfv 5285   CCcc 7953   RRcr 7954   0cc0 7955    <_ cle 8138   ZZcz 9402   ZZ>=cuz 9678    ~~> cli 11674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-rp 9806  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-clim 11675
This theorem is referenced by:  climub  11740
  Copyright terms: Public domain W3C validator