ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climsubc2 Unicode version

Theorem climsubc2 11336
Description: Limit of a constant  C minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climaddc1.5  |-  ( ph  ->  C  e.  CC )
climaddc1.6  |-  ( ph  ->  G  e.  W )
climaddc1.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climsubc2.h  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  -  ( F `  k ) ) )
Assertion
Ref Expression
climsubc2  |-  ( ph  ->  G  ~~>  ( C  -  A ) )
Distinct variable groups:    C, k    k, F    ph, k    A, k   
k, G    k, M    k, Z
Allowed substitution hint:    W( k)

Proof of Theorem climsubc2
StepHypRef Expression
1 climadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climaddc1.5 . . 3  |-  ( ph  ->  C  e.  CC )
4 0z 9262 . . 3  |-  0  e.  ZZ
5 uzssz 9545 . . . 4  |-  ( ZZ>= ` 
0 )  C_  ZZ
6 zex 9260 . . . 4  |-  ZZ  e.  _V
75, 6climconst2 11294 . . 3  |-  ( ( C  e.  CC  /\  0  e.  ZZ )  ->  ( ZZ  X.  { C } )  ~~>  C )
83, 4, 7sylancl 413 . 2  |-  ( ph  ->  ( ZZ  X.  { C } )  ~~>  C )
9 climaddc1.6 . 2  |-  ( ph  ->  G  e.  W )
10 climadd.4 . 2  |-  ( ph  ->  F  ~~>  A )
11 eluzelz 9535 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1211, 1eleq2s 2272 . . . 4  |-  ( k  e.  Z  ->  k  e.  ZZ )
13 fvconst2g 5730 . . . 4  |-  ( ( C  e.  CC  /\  k  e.  ZZ )  ->  ( ( ZZ  X.  { C } ) `  k )  =  C )
143, 12, 13syl2an 289 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { C } ) `  k
)  =  C )
153adantr 276 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  C  e.  CC )
1614, 15eqeltrd 2254 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { C } ) `  k
)  e.  CC )
17 climaddc1.7 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
18 climsubc2.h . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  -  ( F `  k ) ) )
1914oveq1d 5889 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( ZZ  X.  { C } ) `  k )  -  ( F `  k )
)  =  ( C  -  ( F `  k ) ) )
2018, 19eqtr4d 2213 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( ( ZZ  X.  { C } ) `  k
)  -  ( F `
 k ) ) )
211, 2, 8, 9, 10, 16, 17, 20climsub 11331 1  |-  ( ph  ->  G  ~~>  ( C  -  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {csn 3592   class class class wbr 4003    X. cxp 4624   ` cfv 5216  (class class class)co 5874   CCcc 7808   0cc0 7810    - cmin 8126   ZZcz 9251   ZZ>=cuz 9526    ~~> cli 11281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-n0 9175  df-z 9252  df-uz 9527  df-rp 9652  df-seqfrec 10443  df-exp 10517  df-cj 10846  df-re 10847  df-im 10848  df-rsqrt 11002  df-abs 11003  df-clim 11282
This theorem is referenced by:  trireciplem  11503  geolim  11514  geo2lim  11519
  Copyright terms: Public domain W3C validator