ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climsubc2 Unicode version

Theorem climsubc2 11360
Description: Limit of a constant  C minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climaddc1.5  |-  ( ph  ->  C  e.  CC )
climaddc1.6  |-  ( ph  ->  G  e.  W )
climaddc1.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climsubc2.h  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  -  ( F `  k ) ) )
Assertion
Ref Expression
climsubc2  |-  ( ph  ->  G  ~~>  ( C  -  A ) )
Distinct variable groups:    C, k    k, F    ph, k    A, k   
k, G    k, M    k, Z
Allowed substitution hint:    W( k)

Proof of Theorem climsubc2
StepHypRef Expression
1 climadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climaddc1.5 . . 3  |-  ( ph  ->  C  e.  CC )
4 0z 9283 . . 3  |-  0  e.  ZZ
5 uzssz 9566 . . . 4  |-  ( ZZ>= ` 
0 )  C_  ZZ
6 zex 9281 . . . 4  |-  ZZ  e.  _V
75, 6climconst2 11318 . . 3  |-  ( ( C  e.  CC  /\  0  e.  ZZ )  ->  ( ZZ  X.  { C } )  ~~>  C )
83, 4, 7sylancl 413 . 2  |-  ( ph  ->  ( ZZ  X.  { C } )  ~~>  C )
9 climaddc1.6 . 2  |-  ( ph  ->  G  e.  W )
10 climadd.4 . 2  |-  ( ph  ->  F  ~~>  A )
11 eluzelz 9556 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1211, 1eleq2s 2284 . . . 4  |-  ( k  e.  Z  ->  k  e.  ZZ )
13 fvconst2g 5746 . . . 4  |-  ( ( C  e.  CC  /\  k  e.  ZZ )  ->  ( ( ZZ  X.  { C } ) `  k )  =  C )
143, 12, 13syl2an 289 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { C } ) `  k
)  =  C )
153adantr 276 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  C  e.  CC )
1614, 15eqeltrd 2266 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { C } ) `  k
)  e.  CC )
17 climaddc1.7 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
18 climsubc2.h . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  -  ( F `  k ) ) )
1914oveq1d 5906 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( ZZ  X.  { C } ) `  k )  -  ( F `  k )
)  =  ( C  -  ( F `  k ) ) )
2018, 19eqtr4d 2225 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( ( ZZ  X.  { C } ) `  k
)  -  ( F `
 k ) ) )
211, 2, 8, 9, 10, 16, 17, 20climsub 11355 1  |-  ( ph  ->  G  ~~>  ( C  -  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   {csn 3607   class class class wbr 4018    X. cxp 4639   ` cfv 5231  (class class class)co 5891   CCcc 7828   0cc0 7830    - cmin 8147   ZZcz 9272   ZZ>=cuz 9547    ~~> cli 11305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-apti 7945  ax-pre-ltadd 7946  ax-pre-mulgt0 7947  ax-pre-mulext 7948  ax-arch 7949  ax-caucvg 7950
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-reap 8551  df-ap 8558  df-div 8649  df-inn 8939  df-2 8997  df-3 8998  df-4 8999  df-n0 9196  df-z 9273  df-uz 9548  df-rp 9673  df-seqfrec 10465  df-exp 10539  df-cj 10870  df-re 10871  df-im 10872  df-rsqrt 11026  df-abs 11027  df-clim 11306
This theorem is referenced by:  trireciplem  11527  geolim  11538  geo2lim  11543
  Copyright terms: Public domain W3C validator