ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climaddc1 Unicode version

Theorem climaddc1 11281
Description: Limit of a constant  C added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climaddc1.5  |-  ( ph  ->  C  e.  CC )
climaddc1.6  |-  ( ph  ->  G  e.  W )
climaddc1.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climaddc1.h  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( F `
 k )  +  C ) )
Assertion
Ref Expression
climaddc1  |-  ( ph  ->  G  ~~>  ( A  +  C ) )
Distinct variable groups:    C, k    k, F    ph, k    A, k   
k, G    k, M    k, Z
Allowed substitution hint:    W( k)

Proof of Theorem climaddc1
StepHypRef Expression
1 climadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climadd.4 . 2  |-  ( ph  ->  F  ~~>  A )
4 climaddc1.6 . 2  |-  ( ph  ->  G  e.  W )
5 climaddc1.5 . . 3  |-  ( ph  ->  C  e.  CC )
6 0z 9212 . . 3  |-  0  e.  ZZ
7 uzssz 9495 . . . 4  |-  ( ZZ>= ` 
0 )  C_  ZZ
8 zex 9210 . . . 4  |-  ZZ  e.  _V
97, 8climconst2 11243 . . 3  |-  ( ( C  e.  CC  /\  0  e.  ZZ )  ->  ( ZZ  X.  { C } )  ~~>  C )
105, 6, 9sylancl 411 . 2  |-  ( ph  ->  ( ZZ  X.  { C } )  ~~>  C )
11 climaddc1.7 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
12 eluzelz 9485 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1312, 1eleq2s 2265 . . . 4  |-  ( k  e.  Z  ->  k  e.  ZZ )
14 fvconst2g 5708 . . . 4  |-  ( ( C  e.  CC  /\  k  e.  ZZ )  ->  ( ( ZZ  X.  { C } ) `  k )  =  C )
155, 13, 14syl2an 287 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { C } ) `  k
)  =  C )
165adantr 274 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  C  e.  CC )
1715, 16eqeltrd 2247 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { C } ) `  k
)  e.  CC )
18 climaddc1.h . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( F `
 k )  +  C ) )
1915oveq2d 5867 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  +  ( ( ZZ  X.  { C } ) `  k
) )  =  ( ( F `  k
)  +  C ) )
2018, 19eqtr4d 2206 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( F `
 k )  +  ( ( ZZ  X.  { C } ) `  k ) ) )
211, 2, 3, 4, 10, 11, 17, 20climadd 11278 1  |-  ( ph  ->  G  ~~>  ( A  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {csn 3581   class class class wbr 3987    X. cxp 4607   ` cfv 5196  (class class class)co 5851   CCcc 7761   0cc0 7763    + caddc 7766   ZZcz 9201   ZZ>=cuz 9476    ~~> cli 11230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477  df-rp 9600  df-seqfrec 10391  df-exp 10465  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-clim 11231
This theorem is referenced by:  climaddc2  11282  clim2ser2  11290
  Copyright terms: Public domain W3C validator