ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemex Unicode version

Theorem zsupcllemex 11888
Description: Lemma for zsupcl 11889. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcllemex.m  |-  ( ph  ->  M  e.  ZZ )
zsupcllemex.sbm  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
zsupcllemex.mtru  |-  ( ph  ->  ch )
zsupcllemex.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
zsupcllemex.bnd  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
Assertion
Ref Expression
zsupcllemex  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
Distinct variable groups:    n, M, y    ch, n    j, n, ph, y    ps, j, x, z, y    x, n, z
Allowed substitution hints:    ph( x, z)    ps( n)    ch( x, y, z, j)    M( x, z, j)

Proof of Theorem zsupcllemex
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcllemex.bnd . 2  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
2 simpl 108 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  ph )
3 simprr 527 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  j )  -. 
ps )
4 fveq2 5494 . . . . . . . 8  |-  ( w  =  M  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  M )
)
54raleqdv 2671 . . . . . . 7  |-  ( w  =  M  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  M )  -. 
ps ) )
65anbi2d 461 . . . . . 6  |-  ( w  =  M  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  M )  -. 
ps ) ) )
76imbi1d 230 . . . . 5  |-  ( w  =  M  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
8 fveq2 5494 . . . . . . . 8  |-  ( w  =  k  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  k )
)
98raleqdv 2671 . . . . . . 7  |-  ( w  =  k  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  k )  -. 
ps ) )
109anbi2d 461 . . . . . 6  |-  ( w  =  k  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  k )  -. 
ps ) ) )
1110imbi1d 230 . . . . 5  |-  ( w  =  k  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  k )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
12 fveq2 5494 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  ( k  +  1 ) ) )
1312raleqdv 2671 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps ) )
1413anbi2d 461 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps ) ) )
1514imbi1d 230 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  ( k  +  1 ) )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
16 fveq2 5494 . . . . . . . 8  |-  ( w  =  j  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  j )
)
1716raleqdv 2671 . . . . . . 7  |-  ( w  =  j  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  j )  -. 
ps ) )
1817anbi2d 461 . . . . . 6  |-  ( w  =  j  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  j )  -. 
ps ) ) )
1918imbi1d 230 . . . . 5  |-  ( w  =  j  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
20 zsupcllemex.mtru . . . . . . . 8  |-  ( ph  ->  ch )
2120adantr 274 . . . . . . 7  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  ch )
22 zsupcllemex.m . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
23 uzid 9488 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
24 zsupcllemex.sbm . . . . . . . . . . 11  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
2524notbid 662 . . . . . . . . . 10  |-  ( n  =  M  ->  ( -.  ps  <->  -.  ch )
)
2625rspcv 2830 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  M )  -.  ps  ->  -.  ch ) )
2722, 23, 263syl 17 . . . . . . . 8  |-  ( ph  ->  ( A. n  e.  ( ZZ>= `  M )  -.  ps  ->  -.  ch )
)
2827imp 123 . . . . . . 7  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  -.  ch )
2921, 28pm2.21dd 615 . . . . . 6  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
3029a1i 9 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
31 zsupcllemex.dc . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
3231zsupcllemstep 11887 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  k )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
337, 11, 15, 19, 30, 32uzind4 9534 . . . 4  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
3433ad2antrl 487 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  -> 
( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
352, 3, 34mp2and 431 . 2  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
361, 35rexlimddv 2592 1  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452   class class class wbr 3987   ` cfv 5196  (class class class)co 5850   RRcr 7760   1c1 7762    + caddc 7764    < clt 7941   ZZcz 9199   ZZ>=cuz 9474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-fz 9953  df-fzo 10086
This theorem is referenced by:  zsupcl  11889  infssuzex  11891  gcdsupex  11899
  Copyright terms: Public domain W3C validator