ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemex Unicode version

Theorem zsupcllemex 11879
Description: Lemma for zsupcl 11880. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcllemex.m  |-  ( ph  ->  M  e.  ZZ )
zsupcllemex.sbm  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
zsupcllemex.mtru  |-  ( ph  ->  ch )
zsupcllemex.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
zsupcllemex.bnd  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
Assertion
Ref Expression
zsupcllemex  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
Distinct variable groups:    n, M, y    ch, n    j, n, ph, y    ps, j, x, z, y    x, n, z
Allowed substitution hints:    ph( x, z)    ps( n)    ch( x, y, z, j)    M( x, z, j)

Proof of Theorem zsupcllemex
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcllemex.bnd . 2  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
2 simpl 108 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  ph )
3 simprr 522 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  j )  -. 
ps )
4 fveq2 5486 . . . . . . . 8  |-  ( w  =  M  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  M )
)
54raleqdv 2667 . . . . . . 7  |-  ( w  =  M  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  M )  -. 
ps ) )
65anbi2d 460 . . . . . 6  |-  ( w  =  M  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  M )  -. 
ps ) ) )
76imbi1d 230 . . . . 5  |-  ( w  =  M  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
8 fveq2 5486 . . . . . . . 8  |-  ( w  =  k  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  k )
)
98raleqdv 2667 . . . . . . 7  |-  ( w  =  k  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  k )  -. 
ps ) )
109anbi2d 460 . . . . . 6  |-  ( w  =  k  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  k )  -. 
ps ) ) )
1110imbi1d 230 . . . . 5  |-  ( w  =  k  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  k )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
12 fveq2 5486 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  ( k  +  1 ) ) )
1312raleqdv 2667 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps ) )
1413anbi2d 460 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps ) ) )
1514imbi1d 230 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  ( k  +  1 ) )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
16 fveq2 5486 . . . . . . . 8  |-  ( w  =  j  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  j )
)
1716raleqdv 2667 . . . . . . 7  |-  ( w  =  j  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  j )  -. 
ps ) )
1817anbi2d 460 . . . . . 6  |-  ( w  =  j  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  j )  -. 
ps ) ) )
1918imbi1d 230 . . . . 5  |-  ( w  =  j  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
20 zsupcllemex.mtru . . . . . . . 8  |-  ( ph  ->  ch )
2120adantr 274 . . . . . . 7  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  ch )
22 zsupcllemex.m . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
23 uzid 9480 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
24 zsupcllemex.sbm . . . . . . . . . . 11  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
2524notbid 657 . . . . . . . . . 10  |-  ( n  =  M  ->  ( -.  ps  <->  -.  ch )
)
2625rspcv 2826 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  M )  -.  ps  ->  -.  ch ) )
2722, 23, 263syl 17 . . . . . . . 8  |-  ( ph  ->  ( A. n  e.  ( ZZ>= `  M )  -.  ps  ->  -.  ch )
)
2827imp 123 . . . . . . 7  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  -.  ch )
2921, 28pm2.21dd 610 . . . . . 6  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
3029a1i 9 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
31 zsupcllemex.dc . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
3231zsupcllemstep 11878 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  k )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
337, 11, 15, 19, 30, 32uzind4 9526 . . . 4  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
3433ad2antrl 482 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  -> 
( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
352, 3, 34mp2and 430 . 2  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
361, 35rexlimddv 2588 1  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   1c1 7754    + caddc 7756    < clt 7933   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by:  zsupcl  11880  infssuzex  11882  gcdsupex  11890
  Copyright terms: Public domain W3C validator