ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemex Unicode version

Theorem zsupcllemex 11864
Description: Lemma for zsupcl 11865. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcllemex.m  |-  ( ph  ->  M  e.  ZZ )
zsupcllemex.sbm  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
zsupcllemex.mtru  |-  ( ph  ->  ch )
zsupcllemex.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
zsupcllemex.bnd  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
Assertion
Ref Expression
zsupcllemex  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
Distinct variable groups:    n, M, y    ch, n    j, n, ph, y    ps, j, x, z, y    x, n, z
Allowed substitution hints:    ph( x, z)    ps( n)    ch( x, y, z, j)    M( x, z, j)

Proof of Theorem zsupcllemex
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcllemex.bnd . 2  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
2 simpl 108 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  ph )
3 simprr 522 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  j )  -. 
ps )
4 fveq2 5480 . . . . . . . 8  |-  ( w  =  M  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  M )
)
54raleqdv 2665 . . . . . . 7  |-  ( w  =  M  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  M )  -. 
ps ) )
65anbi2d 460 . . . . . 6  |-  ( w  =  M  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  M )  -. 
ps ) ) )
76imbi1d 230 . . . . 5  |-  ( w  =  M  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
8 fveq2 5480 . . . . . . . 8  |-  ( w  =  k  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  k )
)
98raleqdv 2665 . . . . . . 7  |-  ( w  =  k  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  k )  -. 
ps ) )
109anbi2d 460 . . . . . 6  |-  ( w  =  k  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  k )  -. 
ps ) ) )
1110imbi1d 230 . . . . 5  |-  ( w  =  k  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  k )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
12 fveq2 5480 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  ( k  +  1 ) ) )
1312raleqdv 2665 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps ) )
1413anbi2d 460 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps ) ) )
1514imbi1d 230 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  ( k  +  1 ) )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
16 fveq2 5480 . . . . . . . 8  |-  ( w  =  j  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  j )
)
1716raleqdv 2665 . . . . . . 7  |-  ( w  =  j  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  j )  -. 
ps ) )
1817anbi2d 460 . . . . . 6  |-  ( w  =  j  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  j )  -. 
ps ) ) )
1918imbi1d 230 . . . . 5  |-  ( w  =  j  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
20 zsupcllemex.mtru . . . . . . . 8  |-  ( ph  ->  ch )
2120adantr 274 . . . . . . 7  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  ch )
22 zsupcllemex.m . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
23 uzid 9471 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
24 zsupcllemex.sbm . . . . . . . . . . 11  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
2524notbid 657 . . . . . . . . . 10  |-  ( n  =  M  ->  ( -.  ps  <->  -.  ch )
)
2625rspcv 2821 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  M )  -.  ps  ->  -.  ch ) )
2722, 23, 263syl 17 . . . . . . . 8  |-  ( ph  ->  ( A. n  e.  ( ZZ>= `  M )  -.  ps  ->  -.  ch )
)
2827imp 123 . . . . . . 7  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  -.  ch )
2921, 28pm2.21dd 610 . . . . . 6  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
3029a1i 9 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
31 zsupcllemex.dc . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
3231zsupcllemstep 11863 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  k )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
337, 11, 15, 19, 30, 32uzind4 9517 . . . 4  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
3433ad2antrl 482 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  -> 
( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
352, 3, 34mp2and 430 . 2  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
361, 35rexlimddv 2586 1  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   {crab 2446   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   RRcr 7743   1c1 7745    + caddc 7747    < clt 7924   ZZcz 9182   ZZ>=cuz 9457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-fz 9936  df-fzo 10068
This theorem is referenced by:  zsupcl  11865  infssuzex  11867  gcdsupex  11875
  Copyright terms: Public domain W3C validator