ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri GIF version

Theorem lttri 8219
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion
Ref Expression
lttri ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)

Proof of Theorem lttri
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 lt.2 . 2 𝐵 ∈ ℝ
3 lt.3 . 2 𝐶 ∈ ℝ
4 lttr 8188 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
51, 2, 3, 4mp3an 1352 1 ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2180   class class class wbr 4062  cr 7966   < clt 8149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-pre-lttrn 8081
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-xp 4702  df-pnf 8151  df-mnf 8152  df-ltxr 8154
This theorem is referenced by:  1lt3  9250  2lt4  9252  1lt4  9253  3lt5  9255  2lt5  9256  1lt5  9257  4lt6  9259  3lt6  9260  2lt6  9261  1lt6  9262  5lt7  9264  4lt7  9265  3lt7  9266  2lt7  9267  1lt7  9268  6lt8  9270  5lt8  9271  4lt8  9272  3lt8  9273  2lt8  9274  1lt8  9275  7lt9  9277  6lt9  9278  5lt9  9279  4lt9  9280  3lt9  9281  2lt9  9282  1lt9  9283  8lt10  9677  7lt10  9678  6lt10  9679  5lt10  9680  4lt10  9681  3lt10  9682  2lt10  9683  1lt10  9684  sincos2sgn  12243  cos12dec  12245  epos  12258  ene1  12262  eap1  12263  reeff1o  15412  pipos  15427  pigt3  15483  apdiff  16327
  Copyright terms: Public domain W3C validator