Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lttri | GIF version |
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
4 | lttr 7993 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1332 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 < clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: 1lt3 9049 2lt4 9051 1lt4 9052 3lt5 9054 2lt5 9055 1lt5 9056 4lt6 9058 3lt6 9059 2lt6 9060 1lt6 9061 5lt7 9063 4lt7 9064 3lt7 9065 2lt7 9066 1lt7 9067 6lt8 9069 5lt8 9070 4lt8 9071 3lt8 9072 2lt8 9073 1lt8 9074 7lt9 9076 6lt9 9077 5lt9 9078 4lt9 9079 3lt9 9080 2lt9 9081 1lt9 9082 8lt10 9474 7lt10 9475 6lt10 9476 5lt10 9477 4lt10 9478 3lt10 9479 2lt10 9480 1lt10 9481 sincos2sgn 11728 cos12dec 11730 epos 11743 ene1 11747 eap1 11748 reeff1o 13488 pipos 13503 pigt3 13559 apdiff 14080 |
Copyright terms: Public domain | W3C validator |