ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri GIF version

Theorem lttri 8184
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion
Ref Expression
lttri ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)

Proof of Theorem lttri
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 lt.2 . 2 𝐵 ∈ ℝ
3 lt.3 . 2 𝐶 ∈ ℝ
4 lttr 8153 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
51, 2, 3, 4mp3an 1350 1 ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177   class class class wbr 4047  cr 7931   < clt 8114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-pre-lttrn 8046
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-xp 4685  df-pnf 8116  df-mnf 8117  df-ltxr 8119
This theorem is referenced by:  1lt3  9215  2lt4  9217  1lt4  9218  3lt5  9220  2lt5  9221  1lt5  9222  4lt6  9224  3lt6  9225  2lt6  9226  1lt6  9227  5lt7  9229  4lt7  9230  3lt7  9231  2lt7  9232  1lt7  9233  6lt8  9235  5lt8  9236  4lt8  9237  3lt8  9238  2lt8  9239  1lt8  9240  7lt9  9242  6lt9  9243  5lt9  9244  4lt9  9245  3lt9  9246  2lt9  9247  1lt9  9248  8lt10  9642  7lt10  9643  6lt10  9644  5lt10  9645  4lt10  9646  3lt10  9647  2lt10  9648  1lt10  9649  sincos2sgn  12121  cos12dec  12123  epos  12136  ene1  12140  eap1  12141  reeff1o  15289  pipos  15304  pigt3  15360  apdiff  16061
  Copyright terms: Public domain W3C validator