ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri GIF version

Theorem lttri 8024
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion
Ref Expression
lttri ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)

Proof of Theorem lttri
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 lt.2 . 2 𝐵 ∈ ℝ
3 lt.3 . 2 𝐶 ∈ ℝ
4 lttr 7993 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
51, 2, 3, 4mp3an 1332 1 ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141   class class class wbr 3989  cr 7773   < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-lttrn 7888
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-pnf 7956  df-mnf 7957  df-ltxr 7959
This theorem is referenced by:  1lt3  9049  2lt4  9051  1lt4  9052  3lt5  9054  2lt5  9055  1lt5  9056  4lt6  9058  3lt6  9059  2lt6  9060  1lt6  9061  5lt7  9063  4lt7  9064  3lt7  9065  2lt7  9066  1lt7  9067  6lt8  9069  5lt8  9070  4lt8  9071  3lt8  9072  2lt8  9073  1lt8  9074  7lt9  9076  6lt9  9077  5lt9  9078  4lt9  9079  3lt9  9080  2lt9  9081  1lt9  9082  8lt10  9474  7lt10  9475  6lt10  9476  5lt10  9477  4lt10  9478  3lt10  9479  2lt10  9480  1lt10  9481  sincos2sgn  11728  cos12dec  11730  epos  11743  ene1  11747  eap1  11748  reeff1o  13488  pipos  13503  pigt3  13559  apdiff  14080
  Copyright terms: Public domain W3C validator