![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lttri | GIF version |
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
4 | lttr 8045 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1347 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2158 class class class wbr 4015 ℝcr 7824 < clt 8006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-pre-lttrn 7939 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-xp 4644 df-pnf 8008 df-mnf 8009 df-ltxr 8011 |
This theorem is referenced by: 1lt3 9104 2lt4 9106 1lt4 9107 3lt5 9109 2lt5 9110 1lt5 9111 4lt6 9113 3lt6 9114 2lt6 9115 1lt6 9116 5lt7 9118 4lt7 9119 3lt7 9120 2lt7 9121 1lt7 9122 6lt8 9124 5lt8 9125 4lt8 9126 3lt8 9127 2lt8 9128 1lt8 9129 7lt9 9131 6lt9 9132 5lt9 9133 4lt9 9134 3lt9 9135 2lt9 9136 1lt9 9137 8lt10 9529 7lt10 9530 6lt10 9531 5lt10 9532 4lt10 9533 3lt10 9534 2lt10 9535 1lt10 9536 sincos2sgn 11787 cos12dec 11789 epos 11802 ene1 11806 eap1 11807 reeff1o 14490 pipos 14505 pigt3 14561 apdiff 15093 |
Copyright terms: Public domain | W3C validator |