ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgmodid GIF version

Theorem mulgmodid 13291
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
mulgmodid.b 𝐵 = (Base‘𝐺)
mulgmodid.o 0 = (0g𝐺)
mulgmodid.t · = (.g𝐺)
Assertion
Ref Expression
mulgmodid ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))

Proof of Theorem mulgmodid
StepHypRef Expression
1 zq 9700 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
21adantr 276 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℚ)
3 nnq 9707 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
43adantl 277 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℚ)
5 nngt0 9015 . . . . . . 7 (𝑀 ∈ ℕ → 0 < 𝑀)
65adantl 277 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 0 < 𝑀)
7 modqval 10416 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
82, 4, 6, 7syl3anc 1249 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
983ad2ant2 1021 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
109oveq1d 5937 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋))
11 zcn 9331 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1211adantr 276 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℂ)
13 nnz 9345 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
1413adantl 277 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
15 znq 9698 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 / 𝑀) ∈ ℚ)
1615flqcld 10367 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
1714, 16zmulcld 9454 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
1817zcnd 9449 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℂ)
1912, 18negsubd 8343 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
20193ad2ant2 1021 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
2120oveq1d 5937 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋))
22 simp1 999 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝐺 ∈ Grp)
23 simpl 109 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℤ)
24233ad2ant2 1021 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑁 ∈ ℤ)
25143ad2ant2 1021 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑀 ∈ ℤ)
26163ad2ant2 1021 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
2725, 26zmulcld 9454 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
2827znegcld 9450 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
29 simpl 109 . . . . 5 ((𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 ) → 𝑋𝐵)
30293ad2ant3 1022 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑋𝐵)
31 mulgmodid.b . . . . 5 𝐵 = (Base‘𝐺)
32 mulgmodid.t . . . . 5 · = (.g𝐺)
33 eqid 2196 . . . . 5 (+g𝐺) = (+g𝐺)
3431, 32, 33mulgdir 13284 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ ∧ 𝑋𝐵)) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
3522, 24, 28, 30, 34syl13anc 1251 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
3610, 21, 353eqtr2d 2235 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
37 nncn 8998 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
3837adantl 277 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℂ)
3916zcnd 9449 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 / 𝑀)) ∈ ℂ)
4038, 39mulneg2d 8438 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀))))
41403ad2ant2 1021 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀))))
4241oveq1d 5937 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋))
43153ad2ant2 1021 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 / 𝑀) ∈ ℚ)
4443flqcld 10367 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
4544znegcld 9450 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(⌊‘(𝑁 / 𝑀)) ∈ ℤ)
4631, 32mulgassr 13290 . . . . . 6 ((𝐺 ∈ Grp ∧ (-(⌊‘(𝑁 / 𝑀)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)))
4722, 45, 25, 30, 46syl13anc 1251 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)))
48 oveq2 5930 . . . . . . 7 ((𝑀 · 𝑋) = 0 → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
4948adantl 277 . . . . . 6 ((𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 ) → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
50493ad2ant3 1022 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
51 mulgmodid.o . . . . . . 7 0 = (0g𝐺)
5231, 32, 51mulgz 13280 . . . . . 6 ((𝐺 ∈ Grp ∧ -(⌊‘(𝑁 / 𝑀)) ∈ ℤ) → (-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 )
5322, 45, 52syl2anc 411 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 )
5447, 50, 533eqtrd 2233 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 )
5542, 54eqtr3d 2231 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 )
5655oveq2d 5938 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)) = ((𝑁 · 𝑋)(+g𝐺) 0 ))
57 id 19 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
5831, 32mulgcl 13269 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
5957, 23, 29, 58syl3an 1291 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 · 𝑋) ∈ 𝐵)
6031, 33, 51grprid 13164 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑁 · 𝑋)(+g𝐺) 0 ) = (𝑁 · 𝑋))
6122, 59, 60syl2anc 411 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g𝐺) 0 ) = (𝑁 · 𝑋))
6236, 56, 613eqtrd 2233 1 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879   + caddc 7882   · cmul 7884   < clt 8061  cmin 8197  -cneg 8198   / cdiv 8699  cn 8990  cz 9326  cq 9693  cfl 10358   mod cmo 10414  Basecbs 12678  +gcplusg 12755  0gc0g 12927  Grpcgrp 13132  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mulg 13250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator