Proof of Theorem mulgmodid
| Step | Hyp | Ref
| Expression |
| 1 | | zq 9700 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℚ) |
| 2 | 1 | adantr 276 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈
ℚ) |
| 3 | | nnq 9707 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℚ) |
| 4 | 3 | adantl 277 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
ℚ) |
| 5 | | nngt0 9015 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 0 <
𝑀) |
| 6 | 5 | adantl 277 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 0 <
𝑀) |
| 7 | | modqval 10416 |
. . . . . 6
⊢ ((𝑁 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 <
𝑀) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀))))) |
| 8 | 2, 4, 6, 7 | syl3anc 1249 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀))))) |
| 9 | 8 | 3ad2ant2 1021 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀))))) |
| 10 | 9 | oveq1d 5937 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋)) |
| 11 | | zcn 9331 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 12 | 11 | adantr 276 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈
ℂ) |
| 13 | | nnz 9345 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
| 14 | 13 | adantl 277 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
ℤ) |
| 15 | | znq 9698 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 / 𝑀) ∈ ℚ) |
| 16 | 15 | flqcld 10367 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) →
(⌊‘(𝑁 / 𝑀)) ∈
ℤ) |
| 17 | 14, 16 | zmulcld 9454 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ) |
| 18 | 17 | zcnd 9449 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℂ) |
| 19 | 12, 18 | negsubd 8343 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀))))) |
| 20 | 19 | 3ad2ant2 1021 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀))))) |
| 21 | 20 | oveq1d 5937 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋)) |
| 22 | | simp1 999 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝐺 ∈ Grp) |
| 23 | | simpl 109 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈
ℤ) |
| 24 | 23 | 3ad2ant2 1021 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑁 ∈
ℤ) |
| 25 | 14 | 3ad2ant2 1021 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑀 ∈
ℤ) |
| 26 | 16 | 3ad2ant2 1021 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) →
(⌊‘(𝑁 / 𝑀)) ∈
ℤ) |
| 27 | 25, 26 | zmulcld 9454 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ) |
| 28 | 27 | znegcld 9450 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ) |
| 29 | | simpl 109 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 ) → 𝑋 ∈ 𝐵) |
| 30 | 29 | 3ad2ant3 1022 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑋 ∈ 𝐵) |
| 31 | | mulgmodid.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
| 32 | | mulgmodid.t |
. . . . 5
⊢ · =
(.g‘𝐺) |
| 33 | | eqid 2196 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 34 | 31, 32, 33 | mulgdir 13284 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g‘𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋))) |
| 35 | 22, 24, 28, 30, 34 | syl13anc 1251 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g‘𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋))) |
| 36 | 10, 21, 35 | 3eqtr2d 2235 |
. 2
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 · 𝑋)(+g‘𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋))) |
| 37 | | nncn 8998 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
| 38 | 37 | adantl 277 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
ℂ) |
| 39 | 16 | zcnd 9449 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) →
(⌊‘(𝑁 / 𝑀)) ∈
ℂ) |
| 40 | 38, 39 | mulneg2d 8438 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀)))) |
| 41 | 40 | 3ad2ant2 1021 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀)))) |
| 42 | 41 | oveq1d 5937 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)) |
| 43 | 15 | 3ad2ant2 1021 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 / 𝑀) ∈ ℚ) |
| 44 | 43 | flqcld 10367 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) →
(⌊‘(𝑁 / 𝑀)) ∈
ℤ) |
| 45 | 44 | znegcld 9450 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) →
-(⌊‘(𝑁 / 𝑀)) ∈
ℤ) |
| 46 | 31, 32 | mulgassr 13290 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧
(-(⌊‘(𝑁 / 𝑀)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋))) |
| 47 | 22, 45, 25, 30, 46 | syl13anc 1251 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋))) |
| 48 | | oveq2 5930 |
. . . . . . 7
⊢ ((𝑀 · 𝑋) = 0 →
(-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 )) |
| 49 | 48 | adantl 277 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 ) →
(-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 )) |
| 50 | 49 | 3ad2ant3 1022 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) →
(-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 )) |
| 51 | | mulgmodid.o |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
| 52 | 31, 32, 51 | mulgz 13280 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧
-(⌊‘(𝑁 / 𝑀)) ∈ ℤ) →
(-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 ) |
| 53 | 22, 45, 52 | syl2anc 411 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) →
(-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 ) |
| 54 | 47, 50, 53 | 3eqtrd 2233 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 ) |
| 55 | 42, 54 | eqtr3d 2231 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 ) |
| 56 | 55 | oveq2d 5938 |
. 2
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g‘𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)) = ((𝑁 · 𝑋)(+g‘𝐺) 0 )) |
| 57 | | id 19 |
. . . 4
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) |
| 58 | 31, 32 | mulgcl 13269 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| 59 | 57, 23, 29, 58 | syl3an 1291 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 · 𝑋) ∈ 𝐵) |
| 60 | 31, 33, 51 | grprid 13164 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑁 · 𝑋)(+g‘𝐺) 0 ) = (𝑁 · 𝑋)) |
| 61 | 22, 59, 60 | syl2anc 411 |
. 2
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g‘𝐺) 0 ) = (𝑁 · 𝑋)) |
| 62 | 36, 56, 61 | 3eqtrd 2233 |
1
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋)) |