ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgmodid GIF version

Theorem mulgmodid 12877
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
mulgmodid.b 𝐵 = (Base‘𝐺)
mulgmodid.o 0 = (0g𝐺)
mulgmodid.t · = (.g𝐺)
Assertion
Ref Expression
mulgmodid ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))

Proof of Theorem mulgmodid
StepHypRef Expression
1 zq 9594 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
21adantr 276 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℚ)
3 nnq 9601 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
43adantl 277 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℚ)
5 nngt0 8912 . . . . . . 7 (𝑀 ∈ ℕ → 0 < 𝑀)
65adantl 277 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 0 < 𝑀)
7 modqval 10289 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
82, 4, 6, 7syl3anc 1236 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
983ad2ant2 1017 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
109oveq1d 5877 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋))
11 zcn 9226 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1211adantr 276 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℂ)
13 nnz 9240 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
1413adantl 277 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
15 znq 9592 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 / 𝑀) ∈ ℚ)
1615flqcld 10242 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
1714, 16zmulcld 9349 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
1817zcnd 9344 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℂ)
1912, 18negsubd 8245 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
20193ad2ant2 1017 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
2120oveq1d 5877 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋))
22 simp1 995 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝐺 ∈ Grp)
23 simpl 109 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℤ)
24233ad2ant2 1017 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑁 ∈ ℤ)
25143ad2ant2 1017 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑀 ∈ ℤ)
26163ad2ant2 1017 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
2725, 26zmulcld 9349 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
2827znegcld 9345 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
29 simpl 109 . . . . 5 ((𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 ) → 𝑋𝐵)
30293ad2ant3 1018 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑋𝐵)
31 mulgmodid.b . . . . 5 𝐵 = (Base‘𝐺)
32 mulgmodid.t . . . . 5 · = (.g𝐺)
33 eqid 2173 . . . . 5 (+g𝐺) = (+g𝐺)
3431, 32, 33mulgdir 12870 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ ∧ 𝑋𝐵)) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
3522, 24, 28, 30, 34syl13anc 1238 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
3610, 21, 353eqtr2d 2212 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
37 nncn 8895 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
3837adantl 277 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℂ)
3916zcnd 9344 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 / 𝑀)) ∈ ℂ)
4038, 39mulneg2d 8340 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀))))
41403ad2ant2 1017 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀))))
4241oveq1d 5877 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋))
43153ad2ant2 1017 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 / 𝑀) ∈ ℚ)
4443flqcld 10242 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
4544znegcld 9345 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(⌊‘(𝑁 / 𝑀)) ∈ ℤ)
4631, 32mulgassr 12876 . . . . . 6 ((𝐺 ∈ Grp ∧ (-(⌊‘(𝑁 / 𝑀)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)))
4722, 45, 25, 30, 46syl13anc 1238 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)))
48 oveq2 5870 . . . . . . 7 ((𝑀 · 𝑋) = 0 → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
4948adantl 277 . . . . . 6 ((𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 ) → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
50493ad2ant3 1018 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
51 mulgmodid.o . . . . . . 7 0 = (0g𝐺)
5231, 32, 51mulgz 12866 . . . . . 6 ((𝐺 ∈ Grp ∧ -(⌊‘(𝑁 / 𝑀)) ∈ ℤ) → (-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 )
5322, 45, 52syl2anc 411 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 )
5447, 50, 533eqtrd 2210 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 )
5542, 54eqtr3d 2208 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 )
5655oveq2d 5878 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)) = ((𝑁 · 𝑋)(+g𝐺) 0 ))
57 id 19 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
5831, 32mulgcl 12856 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
5957, 23, 29, 58syl3an 1278 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 · 𝑋) ∈ 𝐵)
6031, 33, 51grprid 12764 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑁 · 𝑋)(+g𝐺) 0 ) = (𝑁 · 𝑋))
6122, 59, 60syl2anc 411 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g𝐺) 0 ) = (𝑁 · 𝑋))
6236, 56, 613eqtrd 2210 1 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 976   = wceq 1351  wcel 2144   class class class wbr 3995  cfv 5205  (class class class)co 5862  cc 7781  0cc0 7783   + caddc 7786   · cmul 7788   < clt 7963  cmin 8099  -cneg 8100   / cdiv 8598  cn 8887  cz 9221  cq 9587  cfl 10233   mod cmo 10287  Basecbs 12425  +gcplusg 12489  0gc0g 12623  Grpcgrp 12735  .gcmg 12839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 612  ax-in2 613  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-nul 4121  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-iinf 4578  ax-cnex 7874  ax-resscn 7875  ax-1cn 7876  ax-1re 7877  ax-icn 7878  ax-addcl 7879  ax-addrcl 7880  ax-mulcl 7881  ax-mulrcl 7882  ax-addcom 7883  ax-mulcom 7884  ax-addass 7885  ax-mulass 7886  ax-distr 7887  ax-i2m1 7888  ax-0lt1 7889  ax-1rid 7890  ax-0id 7891  ax-rnegex 7892  ax-precex 7893  ax-cnre 7894  ax-pre-ltirr 7895  ax-pre-ltwlin 7896  ax-pre-lttrn 7897  ax-pre-apti 7898  ax-pre-ltadd 7899  ax-pre-mulgt0 7900  ax-pre-mulext 7901  ax-arch 7902
This theorem depends on definitions:  df-bi 117  df-dc 833  df-3or 977  df-3an 978  df-tru 1354  df-fal 1357  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ne 2344  df-nel 2439  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-dif 3126  df-un 3128  df-in 3130  df-ss 3137  df-nul 3418  df-if 3530  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-tr 4094  df-id 4284  df-po 4287  df-iso 4288  df-iord 4357  df-on 4359  df-ilim 4360  df-suc 4362  df-iom 4581  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-recs 6293  df-frec 6379  df-pnf 7965  df-mnf 7966  df-xr 7967  df-ltxr 7968  df-le 7969  df-sub 8101  df-neg 8102  df-reap 8503  df-ap 8510  df-div 8599  df-inn 8888  df-2 8946  df-n0 9145  df-z 9222  df-uz 9497  df-q 9588  df-rp 9620  df-fz 9975  df-fzo 10108  df-fl 10235  df-mod 10288  df-seqfrec 10411  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680  df-grp 12738  df-minusg 12739  df-mulg 12840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator