| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isum1p | GIF version | ||
| Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| isum1p.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| isum1p.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| isum1p.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| isum1p.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| isum1p.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| isum1p | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isum1p.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | eqid 2204 | . . 3 ⊢ (ℤ≥‘(𝑀 + 1)) = (ℤ≥‘(𝑀 + 1)) | |
| 3 | isum1p.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | uzid 9661 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 6 | peano2uz 9703 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
| 7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) |
| 8 | 7, 1 | eleqtrrdi 2298 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ 𝑍) |
| 9 | isum1p.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 10 | isum1p.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
| 11 | isum1p.6 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
| 12 | 1, 2, 8, 9, 10, 11 | isumsplit 11744 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
| 13 | 3 | zcnd 9495 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 14 | ax-1cn 8017 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 15 | pncan 8277 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀) | |
| 16 | 13, 14, 15 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
| 17 | 16 | oveq2d 5959 | . . . . 5 ⊢ (𝜑 → (𝑀...((𝑀 + 1) − 1)) = (𝑀...𝑀)) |
| 18 | 17 | sumeq1d 11619 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = Σ𝑘 ∈ (𝑀...𝑀)𝐴) |
| 19 | elfzuz 10142 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 20 | 19, 1 | eleqtrrdi 2298 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ 𝑍) |
| 21 | 20, 9 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → (𝐹‘𝑘) = 𝐴) |
| 22 | 21 | sumeq2dv 11621 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = Σ𝑘 ∈ (𝑀...𝑀)𝐴) |
| 23 | fveq2 5575 | . . . . . . 7 ⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) | |
| 24 | 23 | eleq1d 2273 | . . . . . 6 ⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑀) ∈ ℂ)) |
| 25 | 9, 10 | eqeltrd 2281 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 26 | 25 | ralrimiva 2578 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
| 27 | 5, 1 | eleqtrrdi 2298 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 28 | 24, 26, 27 | rspcdva 2881 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℂ) |
| 29 | 23 | fsum1 11665 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝐹‘𝑀) ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = (𝐹‘𝑀)) |
| 30 | 3, 28, 29 | syl2anc 411 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = (𝐹‘𝑀)) |
| 31 | 18, 22, 30 | 3eqtr2d 2243 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = (𝐹‘𝑀)) |
| 32 | 31 | oveq1d 5958 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴) = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
| 33 | 12, 32 | eqtrd 2237 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 dom cdm 4674 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 1c1 7925 + caddc 7927 − cmin 8242 ℤcz 9371 ℤ≥cuz 9647 ...cfz 10129 seqcseq 10590 ⇝ cli 11531 Σcsu 11606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 |
| This theorem is referenced by: isumnn0nn 11746 efsep 11944 |
| Copyright terms: Public domain | W3C validator |