![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isum1p | GIF version |
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isum1p.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isum1p.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isum1p.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isum1p.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isum1p.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isum1p | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isum1p.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | eqid 2193 | . . 3 ⊢ (ℤ≥‘(𝑀 + 1)) = (ℤ≥‘(𝑀 + 1)) | |
3 | isum1p.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | uzid 9609 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
6 | peano2uz 9651 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) |
8 | 7, 1 | eleqtrrdi 2287 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ 𝑍) |
9 | isum1p.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
10 | isum1p.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
11 | isum1p.6 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
12 | 1, 2, 8, 9, 10, 11 | isumsplit 11637 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
13 | 3 | zcnd 9443 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
14 | ax-1cn 7967 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
15 | pncan 8227 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀) | |
16 | 13, 14, 15 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
17 | 16 | oveq2d 5935 | . . . . 5 ⊢ (𝜑 → (𝑀...((𝑀 + 1) − 1)) = (𝑀...𝑀)) |
18 | 17 | sumeq1d 11512 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = Σ𝑘 ∈ (𝑀...𝑀)𝐴) |
19 | elfzuz 10090 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
20 | 19, 1 | eleqtrrdi 2287 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ 𝑍) |
21 | 20, 9 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → (𝐹‘𝑘) = 𝐴) |
22 | 21 | sumeq2dv 11514 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = Σ𝑘 ∈ (𝑀...𝑀)𝐴) |
23 | fveq2 5555 | . . . . . . 7 ⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) | |
24 | 23 | eleq1d 2262 | . . . . . 6 ⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑀) ∈ ℂ)) |
25 | 9, 10 | eqeltrd 2270 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
26 | 25 | ralrimiva 2567 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
27 | 5, 1 | eleqtrrdi 2287 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
28 | 24, 26, 27 | rspcdva 2870 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℂ) |
29 | 23 | fsum1 11558 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝐹‘𝑀) ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = (𝐹‘𝑀)) |
30 | 3, 28, 29 | syl2anc 411 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = (𝐹‘𝑀)) |
31 | 18, 22, 30 | 3eqtr2d 2232 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = (𝐹‘𝑀)) |
32 | 31 | oveq1d 5934 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴) = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
33 | 12, 32 | eqtrd 2226 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 dom cdm 4660 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 1c1 7875 + caddc 7877 − cmin 8192 ℤcz 9320 ℤ≥cuz 9595 ...cfz 10077 seqcseq 10521 ⇝ cli 11424 Σcsu 11499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 |
This theorem is referenced by: isumnn0nn 11639 efsep 11837 |
Copyright terms: Public domain | W3C validator |