ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isum1p GIF version

Theorem isum1p 11500
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isum1p.1 𝑍 = (ℤ𝑀)
isum1p.3 (𝜑𝑀 ∈ ℤ)
isum1p.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isum1p.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isum1p.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isum1p (𝜑 → Σ𝑘𝑍 𝐴 = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isum1p
StepHypRef Expression
1 isum1p.1 . . 3 𝑍 = (ℤ𝑀)
2 eqid 2177 . . 3 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
3 isum1p.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
4 uzid 9542 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
53, 4syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
6 peano2uz 9583 . . . . 5 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
75, 6syl 14 . . . 4 (𝜑 → (𝑀 + 1) ∈ (ℤ𝑀))
87, 1eleqtrrdi 2271 . . 3 (𝜑 → (𝑀 + 1) ∈ 𝑍)
9 isum1p.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
10 isum1p.5 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
11 isum1p.6 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
121, 2, 8, 9, 10, 11isumsplit 11499 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
133zcnd 9376 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
14 ax-1cn 7904 . . . . . . 7 1 ∈ ℂ
15 pncan 8163 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
1613, 14, 15sylancl 413 . . . . . 6 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
1716oveq2d 5891 . . . . 5 (𝜑 → (𝑀...((𝑀 + 1) − 1)) = (𝑀...𝑀))
1817sumeq1d 11374 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = Σ𝑘 ∈ (𝑀...𝑀)𝐴)
19 elfzuz 10021 . . . . . . 7 (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ (ℤ𝑀))
2019, 1eleqtrrdi 2271 . . . . . 6 (𝑘 ∈ (𝑀...𝑀) → 𝑘𝑍)
2120, 9sylan2 286 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑀)) → (𝐹𝑘) = 𝐴)
2221sumeq2dv 11376 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = Σ𝑘 ∈ (𝑀...𝑀)𝐴)
23 fveq2 5516 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2423eleq1d 2246 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
259, 10eqeltrd 2254 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2625ralrimiva 2550 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
275, 1eleqtrrdi 2271 . . . . . 6 (𝜑𝑀𝑍)
2824, 26, 27rspcdva 2847 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℂ)
2923fsum1 11420 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐹𝑀) ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = (𝐹𝑀))
303, 28, 29syl2anc 411 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = (𝐹𝑀))
3118, 22, 303eqtr2d 2216 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = (𝐹𝑀))
3231oveq1d 5890 . 2 (𝜑 → (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴) = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
3312, 32eqtrd 2210 1 (𝜑 → Σ𝑘𝑍 𝐴 = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  dom cdm 4627  cfv 5217  (class class class)co 5875  cc 7809  1c1 7812   + caddc 7814  cmin 8128  cz 9253  cuz 9528  ...cfz 10008  seqcseq 10445  cli 11286  Σcsu 11361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362
This theorem is referenced by:  isumnn0nn  11501  efsep  11699
  Copyright terms: Public domain W3C validator