ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isum1p GIF version

Theorem isum1p 10947
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isum1p.1 𝑍 = (ℤ𝑀)
isum1p.3 (𝜑𝑀 ∈ ℤ)
isum1p.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isum1p.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isum1p.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isum1p (𝜑 → Σ𝑘𝑍 𝐴 = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isum1p
StepHypRef Expression
1 isum1p.1 . . 3 𝑍 = (ℤ𝑀)
2 eqid 2089 . . 3 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
3 isum1p.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
4 uzid 9094 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
53, 4syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
6 peano2uz 9132 . . . . 5 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
75, 6syl 14 . . . 4 (𝜑 → (𝑀 + 1) ∈ (ℤ𝑀))
87, 1syl6eleqr 2182 . . 3 (𝜑 → (𝑀 + 1) ∈ 𝑍)
9 isum1p.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
10 isum1p.5 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
11 isum1p.6 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
121, 2, 8, 9, 10, 11isumsplit 10946 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
133zcnd 8930 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
14 ax-1cn 7499 . . . . . . 7 1 ∈ ℂ
15 pncan 7749 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
1613, 14, 15sylancl 405 . . . . . 6 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
1716oveq2d 5682 . . . . 5 (𝜑 → (𝑀...((𝑀 + 1) − 1)) = (𝑀...𝑀))
1817sumeq1d 10816 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = Σ𝑘 ∈ (𝑀...𝑀)𝐴)
19 elfzuz 9497 . . . . . . 7 (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ (ℤ𝑀))
2019, 1syl6eleqr 2182 . . . . . 6 (𝑘 ∈ (𝑀...𝑀) → 𝑘𝑍)
2120, 9sylan2 281 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑀)) → (𝐹𝑘) = 𝐴)
2221sumeq2dv 10818 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = Σ𝑘 ∈ (𝑀...𝑀)𝐴)
23 fveq2 5318 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2423eleq1d 2157 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
259, 10eqeltrd 2165 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2625ralrimiva 2447 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
275, 1syl6eleqr 2182 . . . . . 6 (𝜑𝑀𝑍)
2824, 26, 27rspcdva 2728 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℂ)
2923fsum1 10867 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐹𝑀) ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = (𝐹𝑀))
303, 28, 29syl2anc 404 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = (𝐹𝑀))
3118, 22, 303eqtr2d 2127 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = (𝐹𝑀))
3231oveq1d 5681 . 2 (𝜑 → (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴) = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
3312, 32eqtrd 2121 1 (𝜑 → Σ𝑘𝑍 𝐴 = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wcel 1439  dom cdm 4452  cfv 5028  (class class class)co 5666  cc 7409  1c1 7412   + caddc 7414  cmin 7714  cz 8811  cuz 9080  ...cfz 9485  seqcseq 9913  cli 10727  Σcsu 10803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-ihash 10245  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804
This theorem is referenced by:  isumnn0nn  10948  efsep  11042
  Copyright terms: Public domain W3C validator