ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4lt5 GIF version

Theorem 4lt5 9194
Description: 4 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
4lt5 4 < 5

Proof of Theorem 4lt5
StepHypRef Expression
1 4re 9095 . . 3 4 ∈ ℝ
21ltp1i 8960 . 2 4 < (4 + 1)
3 df-5 9080 . 2 5 = (4 + 1)
42, 3breqtrri 4070 1 4 < 5
Colors of variables: wff set class
Syntax hints:   class class class wbr 4043  (class class class)co 5934  1c1 7908   + caddc 7910   < clt 8089  4c4 9071  5c5 9072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4679  df-iota 5229  df-fv 5276  df-ov 5937  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-2 9077  df-3 9078  df-4 9079  df-5 9080
This theorem is referenced by:  3lt5  9195  2lt5  9196  1lt5  9197  4lt6  9199  4lt7  9205  4lt8  9212  4lt9  9220  4lt10  9621  prdsvalstrd  13021  gausslemma2dlem4  15459
  Copyright terms: Public domain W3C validator