| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4pos | GIF version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4pos | ⊢ 0 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9125 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1re 8086 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 3pos 9145 | . . 3 ⊢ 0 < 3 | |
| 4 | 0lt1 8214 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 8579 | . 2 ⊢ 0 < (3 + 1) |
| 6 | df-4 9112 | . 2 ⊢ 4 = (3 + 1) | |
| 7 | 5, 6 | breqtrri 4077 | 1 ⊢ 0 < 4 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4050 (class class class)co 5956 0cc0 7940 1c1 7941 + caddc 7943 < clt 8122 3c3 9103 4c4 9104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-xp 4688 df-iota 5240 df-fv 5287 df-ov 5959 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-2 9110 df-3 9111 df-4 9112 |
| This theorem is referenced by: 4ne0 9149 4ap0 9150 5pos 9151 8th4div3 9271 div4p1lem1div2 9306 fldiv4p1lem1div2 10465 iexpcyc 10806 faclbnd2 10904 resqrexlemover 11391 resqrexlemcalc1 11395 resqrexlemcalc2 11396 resqrexlemcalc3 11397 resqrexlemnm 11399 resqrexlemga 11404 sqrt2gt1lt2 11430 flodddiv4 12317 dveflem 15268 coseq0negpitopi 15378 sincos4thpi 15382 gausslemma2dlem0d 15599 |
| Copyright terms: Public domain | W3C validator |