| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4pos | GIF version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4pos | ⊢ 0 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9083 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1re 8044 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 3pos 9103 | . . 3 ⊢ 0 < 3 | |
| 4 | 0lt1 8172 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 8537 | . 2 ⊢ 0 < (3 + 1) |
| 6 | df-4 9070 | . 2 ⊢ 4 = (3 + 1) | |
| 7 | 5, 6 | breqtrri 4061 | 1 ⊢ 0 < 4 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4034 (class class class)co 5925 0cc0 7898 1c1 7899 + caddc 7901 < clt 8080 3c3 9061 4c4 9062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-2 9068 df-3 9069 df-4 9070 |
| This theorem is referenced by: 4ne0 9107 4ap0 9108 5pos 9109 8th4div3 9229 div4p1lem1div2 9264 fldiv4p1lem1div2 10414 iexpcyc 10755 faclbnd2 10853 resqrexlemover 11194 resqrexlemcalc1 11198 resqrexlemcalc2 11199 resqrexlemcalc3 11200 resqrexlemnm 11202 resqrexlemga 11207 sqrt2gt1lt2 11233 flodddiv4 12120 dveflem 15070 coseq0negpitopi 15180 sincos4thpi 15184 gausslemma2dlem0d 15401 |
| Copyright terms: Public domain | W3C validator |