ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lt3 GIF version

Theorem 2lt3 8584
Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.)
Assertion
Ref Expression
2lt3 2 < 3

Proof of Theorem 2lt3
StepHypRef Expression
1 2re 8490 . . 3 2 ∈ ℝ
21ltp1i 8364 . 2 2 < (2 + 1)
3 df-3 8480 . 2 3 = (2 + 1)
42, 3breqtrri 3870 1 2 < 3
Colors of variables: wff set class
Syntax hints:   class class class wbr 3845  (class class class)co 5652  1c1 7349   + caddc 7351   < clt 7520  2c2 8471  3c3 8472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-xp 4444  df-iota 4980  df-fv 5023  df-ov 5655  df-pnf 7522  df-mnf 7523  df-ltxr 7525  df-2 8479  df-3 8480
This theorem is referenced by:  1lt3  8585  2lt4  8587  2lt6  8596  2lt7  8602  2lt8  8609  2lt9  8617  3halfnz  8841  2lt10  9012  uzuzle23  9057  uz3m2nn  9059  fztpval  9493  expnass  10056  cos01gt0  11049  3lcm2e6  11413  ex-fl  11607
  Copyright terms: Public domain W3C validator