| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lt3 | GIF version | ||
| Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 2lt3 | ⊢ 2 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9077 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1 | ltp1i 8949 | . 2 ⊢ 2 < (2 + 1) |
| 3 | df-3 9067 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 2, 3 | breqtrri 4061 | 1 ⊢ 2 < 3 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4034 (class class class)co 5925 1c1 7897 + caddc 7899 < clt 8078 2c2 9058 3c3 9059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-2 9066 df-3 9067 |
| This theorem is referenced by: 1lt3 9179 2lt4 9181 2lt6 9190 2lt7 9196 2lt8 9203 2lt9 9211 3halfnz 9440 2lt10 9611 uzuzle23 9662 uz3m2nn 9664 fztpval 10175 expnass 10754 cos01gt0 11945 3lcm2e6 12353 plusgndxnmulrndx 12835 rngstrg 12837 slotsdifunifndx 12934 cnfldstr 14190 coseq00topi 15155 coseq0negpitopi 15156 cos02pilt1 15171 2logb9irr 15291 2logb3irr 15293 2logb9irrap 15297 ex-fl 15455 |
| Copyright terms: Public domain | W3C validator |