| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lt3 | GIF version | ||
| Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 2lt3 | ⊢ 2 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9121 | . . 3 ⊢ 2 ∈ ℝ | |
| 2 | 1 | ltp1i 8993 | . 2 ⊢ 2 < (2 + 1) |
| 3 | df-3 9111 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 2, 3 | breqtrri 4077 | 1 ⊢ 2 < 3 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4050 (class class class)co 5956 1c1 7941 + caddc 7943 < clt 8122 2c2 9102 3c3 9103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-xp 4688 df-iota 5240 df-fv 5287 df-ov 5959 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-2 9110 df-3 9111 |
| This theorem is referenced by: 1lt3 9223 2lt4 9225 2lt6 9234 2lt7 9240 2lt8 9247 2lt9 9255 3halfnz 9485 2lt10 9656 uzuzle23 9707 uz3m2nn 9709 fztpval 10220 expnass 10807 cos01gt0 12144 3lcm2e6 12552 plusgndxnmulrndx 13035 rngstrg 13037 slotsdifunifndx 13134 cnfldstr 14390 coseq00topi 15377 coseq0negpitopi 15378 cos02pilt1 15393 2logb9irr 15513 2logb3irr 15515 2logb9irrap 15519 ex-fl 15795 |
| Copyright terms: Public domain | W3C validator |