![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2lt3 | GIF version |
Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
2lt3 | ⊢ 2 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 9052 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1 | ltp1i 8924 | . 2 ⊢ 2 < (2 + 1) |
3 | df-3 9042 | . 2 ⊢ 3 = (2 + 1) | |
4 | 2, 3 | breqtrri 4056 | 1 ⊢ 2 < 3 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4029 (class class class)co 5918 1c1 7873 + caddc 7875 < clt 8054 2c2 9033 3c3 9034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-2 9041 df-3 9042 |
This theorem is referenced by: 1lt3 9153 2lt4 9155 2lt6 9164 2lt7 9170 2lt8 9177 2lt9 9185 3halfnz 9414 2lt10 9585 uzuzle23 9636 uz3m2nn 9638 fztpval 10149 expnass 10716 cos01gt0 11906 3lcm2e6 12298 plusgndxnmulrndx 12750 rngstrg 12752 slotsdifunifndx 12845 coseq00topi 14970 coseq0negpitopi 14971 cos02pilt1 14986 2logb9irr 15103 2logb3irr 15105 2logb9irrap 15109 ex-fl 15217 |
Copyright terms: Public domain | W3C validator |