![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2pos | GIF version |
Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2pos | ⊢ 0 < 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 8020 | . . 3 ⊢ 1 ∈ ℝ | |
2 | 0lt1 8148 | . . 3 ⊢ 0 < 1 | |
3 | 1, 1, 2, 2 | addgt0ii 8512 | . 2 ⊢ 0 < (1 + 1) |
4 | df-2 9043 | . 2 ⊢ 2 = (1 + 1) | |
5 | 3, 4 | breqtrri 4057 | 1 ⊢ 0 < 2 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4030 (class class class)co 5919 0cc0 7874 1c1 7875 + caddc 7877 < clt 8056 2c2 9035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-iota 5216 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-2 9043 |
This theorem is referenced by: 2ne0 9076 2ap0 9077 3pos 9078 halfgt0 9200 halflt1 9202 halfpos2 9215 halfnneg2 9217 nominpos 9223 avglt1 9224 avglt2 9225 nn0n0n1ge2b 9399 3halfnz 9417 2rp 9727 xleaddadd 9956 2tnp1ge0ge0 10373 mulp1mod1 10439 amgm2 11265 cos2bnd 11906 sin02gt0 11910 sincos2sgn 11912 sin4lt0 11913 epos 11927 oexpneg 12021 oddge22np1 12025 evennn02n 12026 nn0ehalf 12047 nno 12050 nn0oddm1d2 12053 nnoddm1d2 12054 flodddiv4t2lthalf 12081 sqrt2re 12304 sqrt2irrap 12321 slotsdifdsndx 12841 cnfldstr 14057 bl2in 14582 pilem3 14959 pipos 14964 sinhalfpilem 14967 sincosq1lem 15001 sinq12gt0 15006 coseq00topi 15011 coseq0negpitopi 15012 tangtx 15014 sincos4thpi 15016 tan4thpi 15017 sincos6thpi 15018 cosordlem 15025 cos02pilt1 15027 gausslemma2dlem0c 15208 gausslemma2dlem1a 15215 gausslemma2dlem2 15219 gausslemma2dlem3 15220 lgseisenlem1 15227 lgseisenlem2 15228 lgseisenlem3 15229 lgsquadlem1 15234 lgsquadlem2 15235 2lgslem1a1 15243 2lgslem1a2 15244 2lgslem1c 15247 2lgslem3a1 15254 ex-fl 15287 |
Copyright terms: Public domain | W3C validator |