| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2pos | GIF version | ||
| Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2pos | ⊢ 0 < 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8133 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 8261 | . . 3 ⊢ 0 < 1 | |
| 3 | 1, 1, 2, 2 | addgt0ii 8626 | . 2 ⊢ 0 < (1 + 1) |
| 4 | df-2 9157 | . 2 ⊢ 2 = (1 + 1) | |
| 5 | 3, 4 | breqtrri 4109 | 1 ⊢ 0 < 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4082 (class class class)co 5994 0cc0 7987 1c1 7988 + caddc 7990 < clt 8169 2c2 9149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-iota 5274 df-fv 5322 df-ov 5997 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-2 9157 |
| This theorem is referenced by: 2ne0 9190 2ap0 9191 3pos 9192 halfgt0 9314 halflt1 9316 halfpos2 9329 halfnneg2 9331 nominpos 9337 avglt1 9338 avglt2 9339 nn0n0n1ge2b 9514 3halfnz 9532 2rp 9842 xleaddadd 10071 2tnp1ge0ge0 10508 mulp1mod1 10574 s3fv0g 11309 amgm2 11615 cos2bnd 12257 sin02gt0 12261 sincos2sgn 12263 sin4lt0 12264 epos 12278 oexpneg 12374 oddge22np1 12378 evennn02n 12379 nn0ehalf 12400 nno 12403 nn0oddm1d2 12406 nnoddm1d2 12407 flodddiv4t2lthalf 12436 sqrt2re 12671 sqrt2irrap 12688 slotsdifdsndx 13244 imasvalstrd 13289 cnfldstr 14507 bl2in 15062 pilem3 15442 pipos 15447 sinhalfpilem 15450 sincosq1lem 15484 sinq12gt0 15489 coseq00topi 15494 coseq0negpitopi 15495 tangtx 15497 sincos4thpi 15499 tan4thpi 15500 sincos6thpi 15501 cosordlem 15508 cos02pilt1 15510 gausslemma2dlem0c 15715 gausslemma2dlem1a 15722 gausslemma2dlem2 15726 gausslemma2dlem3 15727 lgseisenlem1 15734 lgseisenlem2 15735 lgseisenlem3 15736 lgsquadlem1 15741 lgsquadlem2 15742 2lgslem1a1 15750 2lgslem1a2 15751 2lgslem1c 15754 2lgslem3a1 15761 ex-fl 16019 |
| Copyright terms: Public domain | W3C validator |