| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2pos | GIF version | ||
| Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2pos | ⊢ 0 < 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8153 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 8281 | . . 3 ⊢ 0 < 1 | |
| 3 | 1, 1, 2, 2 | addgt0ii 8646 | . 2 ⊢ 0 < (1 + 1) |
| 4 | df-2 9177 | . 2 ⊢ 2 = (1 + 1) | |
| 5 | 3, 4 | breqtrri 4110 | 1 ⊢ 0 < 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4083 (class class class)co 6007 0cc0 8007 1c1 8008 + caddc 8010 < clt 8189 2c2 9169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-iota 5278 df-fv 5326 df-ov 6010 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-2 9177 |
| This theorem is referenced by: 2ne0 9210 2ap0 9211 3pos 9212 halfgt0 9334 halflt1 9336 halfpos2 9349 halfnneg2 9351 nominpos 9357 avglt1 9358 avglt2 9359 nn0n0n1ge2b 9534 3halfnz 9552 2rp 9862 xleaddadd 10091 2tnp1ge0ge0 10529 mulp1mod1 10595 s3fv0g 11331 amgm2 11637 cos2bnd 12279 sin02gt0 12283 sincos2sgn 12285 sin4lt0 12286 epos 12300 oexpneg 12396 oddge22np1 12400 evennn02n 12401 nn0ehalf 12422 nno 12425 nn0oddm1d2 12428 nnoddm1d2 12429 flodddiv4t2lthalf 12458 sqrt2re 12693 sqrt2irrap 12710 slotsdifdsndx 13266 imasvalstrd 13311 cnfldstr 14530 bl2in 15085 pilem3 15465 pipos 15470 sinhalfpilem 15473 sincosq1lem 15507 sinq12gt0 15512 coseq00topi 15517 coseq0negpitopi 15518 tangtx 15520 sincos4thpi 15522 tan4thpi 15523 sincos6thpi 15524 cosordlem 15531 cos02pilt1 15533 gausslemma2dlem0c 15738 gausslemma2dlem1a 15745 gausslemma2dlem2 15749 gausslemma2dlem3 15750 lgseisenlem1 15757 lgseisenlem2 15758 lgseisenlem3 15759 lgsquadlem1 15764 lgsquadlem2 15765 2lgslem1a1 15773 2lgslem1a2 15774 2lgslem1c 15777 2lgslem3a1 15784 ex-fl 16113 |
| Copyright terms: Public domain | W3C validator |