![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2pos | GIF version |
Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2pos | ⊢ 0 < 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 8018 | . . 3 ⊢ 1 ∈ ℝ | |
2 | 0lt1 8146 | . . 3 ⊢ 0 < 1 | |
3 | 1, 1, 2, 2 | addgt0ii 8510 | . 2 ⊢ 0 < (1 + 1) |
4 | df-2 9041 | . 2 ⊢ 2 = (1 + 1) | |
5 | 3, 4 | breqtrri 4056 | 1 ⊢ 0 < 2 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4029 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 < clt 8054 2c2 9033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-2 9041 |
This theorem is referenced by: 2ne0 9074 2ap0 9075 3pos 9076 halfgt0 9197 halflt1 9199 halfpos2 9212 halfnneg2 9214 nominpos 9220 avglt1 9221 avglt2 9222 nn0n0n1ge2b 9396 3halfnz 9414 2rp 9724 xleaddadd 9953 2tnp1ge0ge0 10370 mulp1mod1 10436 amgm2 11262 cos2bnd 11903 sin02gt0 11907 sincos2sgn 11909 sin4lt0 11910 epos 11924 oexpneg 12018 oddge22np1 12022 evennn02n 12023 nn0ehalf 12044 nno 12047 nn0oddm1d2 12050 nnoddm1d2 12051 flodddiv4t2lthalf 12078 sqrt2re 12301 sqrt2irrap 12318 slotsdifdsndx 12838 bl2in 14571 pilem3 14918 pipos 14923 sinhalfpilem 14926 sincosq1lem 14960 sinq12gt0 14965 coseq00topi 14970 coseq0negpitopi 14971 tangtx 14973 sincos4thpi 14975 tan4thpi 14976 sincos6thpi 14977 cosordlem 14984 cos02pilt1 14986 gausslemma2dlem0c 15167 gausslemma2dlem1a 15174 gausslemma2dlem2 15178 gausslemma2dlem3 15179 lgseisenlem1 15186 lgseisenlem2 15187 lgseisenlem3 15188 lgsquadlem1 15191 ex-fl 15217 |
Copyright terms: Public domain | W3C validator |