Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2pos | GIF version |
Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2pos | ⊢ 0 < 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7898 | . . 3 ⊢ 1 ∈ ℝ | |
2 | 0lt1 8025 | . . 3 ⊢ 0 < 1 | |
3 | 1, 1, 2, 2 | addgt0ii 8389 | . 2 ⊢ 0 < (1 + 1) |
4 | df-2 8916 | . 2 ⊢ 2 = (1 + 1) | |
5 | 3, 4 | breqtrri 4009 | 1 ⊢ 0 < 2 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3982 (class class class)co 5842 0cc0 7753 1c1 7754 + caddc 7756 < clt 7933 2c2 8908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-2 8916 |
This theorem is referenced by: 2ne0 8949 2ap0 8950 3pos 8951 halfgt0 9072 halflt1 9074 halfpos2 9087 halfnneg2 9089 nominpos 9094 avglt1 9095 avglt2 9096 nn0n0n1ge2b 9270 3halfnz 9288 2rp 9594 xleaddadd 9823 2tnp1ge0ge0 10236 mulp1mod1 10300 amgm2 11060 cos2bnd 11701 sin02gt0 11704 sincos2sgn 11706 sin4lt0 11707 epos 11721 oexpneg 11814 oddge22np1 11818 evennn02n 11819 nn0ehalf 11840 nno 11843 nn0oddm1d2 11846 nnoddm1d2 11847 flodddiv4t2lthalf 11874 sqrt2re 12095 sqrt2irrap 12112 bl2in 13053 pilem3 13354 pipos 13359 sinhalfpilem 13362 sincosq1lem 13396 sinq12gt0 13401 coseq00topi 13406 coseq0negpitopi 13407 tangtx 13409 sincos4thpi 13411 tan4thpi 13412 sincos6thpi 13413 cosordlem 13420 cos02pilt1 13422 ex-fl 13616 |
Copyright terms: Public domain | W3C validator |