![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2pos | GIF version |
Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2pos | ⊢ 0 < 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7584 | . . 3 ⊢ 1 ∈ ℝ | |
2 | 0lt1 7707 | . . 3 ⊢ 0 < 1 | |
3 | 1, 1, 2, 2 | addgt0ii 8066 | . 2 ⊢ 0 < (1 + 1) |
4 | df-2 8579 | . 2 ⊢ 2 = (1 + 1) | |
5 | 3, 4 | breqtrri 3892 | 1 ⊢ 0 < 2 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3867 (class class class)co 5690 0cc0 7447 1c1 7448 + caddc 7450 < clt 7619 2c2 8571 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-xp 4473 df-iota 5014 df-fv 5057 df-ov 5693 df-pnf 7621 df-mnf 7622 df-ltxr 7624 df-2 8579 |
This theorem is referenced by: 2ne0 8612 2ap0 8613 3pos 8614 halfgt0 8729 halflt1 8731 halfpos2 8744 halfnneg2 8746 nominpos 8751 avglt1 8752 avglt2 8753 nn0n0n1ge2b 8924 3halfnz 8942 2rp 9238 xleaddadd 9453 2tnp1ge0ge0 9857 mulp1mod1 9921 amgm2 10682 cos2bnd 11216 sin02gt0 11219 sincos2sgn 11221 sin4lt0 11222 epos 11233 oexpneg 11320 oddge22np1 11324 evennn02n 11325 nn0ehalf 11346 nno 11349 nn0oddm1d2 11352 nnoddm1d2 11353 flodddiv4t2lthalf 11380 sqrt2re 11585 sqrt2irrap 11601 bl2in 12205 ex-fl 12376 |
Copyright terms: Public domain | W3C validator |