| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2pos | GIF version | ||
| Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2pos | ⊢ 0 < 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8084 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 8212 | . . 3 ⊢ 0 < 1 | |
| 3 | 1, 1, 2, 2 | addgt0ii 8577 | . 2 ⊢ 0 < (1 + 1) |
| 4 | df-2 9108 | . 2 ⊢ 2 = (1 + 1) | |
| 5 | 3, 4 | breqtrri 4075 | 1 ⊢ 0 < 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4048 (class class class)co 5954 0cc0 7938 1c1 7939 + caddc 7941 < clt 8120 2c2 9100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-xp 4686 df-iota 5238 df-fv 5285 df-ov 5957 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-2 9108 |
| This theorem is referenced by: 2ne0 9141 2ap0 9142 3pos 9143 halfgt0 9265 halflt1 9267 halfpos2 9280 halfnneg2 9282 nominpos 9288 avglt1 9289 avglt2 9290 nn0n0n1ge2b 9465 3halfnz 9483 2rp 9793 xleaddadd 10022 2tnp1ge0ge0 10457 mulp1mod1 10523 amgm2 11479 cos2bnd 12121 sin02gt0 12125 sincos2sgn 12127 sin4lt0 12128 epos 12142 oexpneg 12238 oddge22np1 12242 evennn02n 12243 nn0ehalf 12264 nno 12267 nn0oddm1d2 12270 nnoddm1d2 12271 flodddiv4t2lthalf 12300 sqrt2re 12535 sqrt2irrap 12552 slotsdifdsndx 13107 imasvalstrd 13152 cnfldstr 14370 bl2in 14925 pilem3 15305 pipos 15310 sinhalfpilem 15313 sincosq1lem 15347 sinq12gt0 15352 coseq00topi 15357 coseq0negpitopi 15358 tangtx 15360 sincos4thpi 15362 tan4thpi 15363 sincos6thpi 15364 cosordlem 15371 cos02pilt1 15373 gausslemma2dlem0c 15578 gausslemma2dlem1a 15585 gausslemma2dlem2 15589 gausslemma2dlem3 15590 lgseisenlem1 15597 lgseisenlem2 15598 lgseisenlem3 15599 lgsquadlem1 15604 lgsquadlem2 15605 2lgslem1a1 15613 2lgslem1a2 15614 2lgslem1c 15617 2lgslem3a1 15624 ex-fl 15775 |
| Copyright terms: Public domain | W3C validator |