Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2pos | GIF version |
Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2pos | ⊢ 0 < 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7919 | . . 3 ⊢ 1 ∈ ℝ | |
2 | 0lt1 8046 | . . 3 ⊢ 0 < 1 | |
3 | 1, 1, 2, 2 | addgt0ii 8410 | . 2 ⊢ 0 < (1 + 1) |
4 | df-2 8937 | . 2 ⊢ 2 = (1 + 1) | |
5 | 3, 4 | breqtrri 4016 | 1 ⊢ 0 < 2 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3989 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 < clt 7954 2c2 8929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-2 8937 |
This theorem is referenced by: 2ne0 8970 2ap0 8971 3pos 8972 halfgt0 9093 halflt1 9095 halfpos2 9108 halfnneg2 9110 nominpos 9115 avglt1 9116 avglt2 9117 nn0n0n1ge2b 9291 3halfnz 9309 2rp 9615 xleaddadd 9844 2tnp1ge0ge0 10257 mulp1mod1 10321 amgm2 11082 cos2bnd 11723 sin02gt0 11726 sincos2sgn 11728 sin4lt0 11729 epos 11743 oexpneg 11836 oddge22np1 11840 evennn02n 11841 nn0ehalf 11862 nno 11865 nn0oddm1d2 11868 nnoddm1d2 11869 flodddiv4t2lthalf 11896 sqrt2re 12117 sqrt2irrap 12134 bl2in 13197 pilem3 13498 pipos 13503 sinhalfpilem 13506 sincosq1lem 13540 sinq12gt0 13545 coseq00topi 13550 coseq0negpitopi 13551 tangtx 13553 sincos4thpi 13555 tan4thpi 13556 sincos6thpi 13557 cosordlem 13564 cos02pilt1 13566 ex-fl 13760 |
Copyright terms: Public domain | W3C validator |