| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2pos | GIF version | ||
| Description: The number 2 is positive. (Contributed by NM, 27-May-1999.) | 
| Ref | Expression | 
|---|---|
| 2pos | ⊢ 0 < 2 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1re 8025 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 8153 | . . 3 ⊢ 0 < 1 | |
| 3 | 1, 1, 2, 2 | addgt0ii 8518 | . 2 ⊢ 0 < (1 + 1) | 
| 4 | df-2 9049 | . 2 ⊢ 2 = (1 + 1) | |
| 5 | 3, 4 | breqtrri 4060 | 1 ⊢ 0 < 2 | 
| Colors of variables: wff set class | 
| Syntax hints: class class class wbr 4033 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 < clt 8061 2c2 9041 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-2 9049 | 
| This theorem is referenced by: 2ne0 9082 2ap0 9083 3pos 9084 halfgt0 9206 halflt1 9208 halfpos2 9221 halfnneg2 9223 nominpos 9229 avglt1 9230 avglt2 9231 nn0n0n1ge2b 9405 3halfnz 9423 2rp 9733 xleaddadd 9962 2tnp1ge0ge0 10391 mulp1mod1 10457 amgm2 11283 cos2bnd 11925 sin02gt0 11929 sincos2sgn 11931 sin4lt0 11932 epos 11946 oexpneg 12042 oddge22np1 12046 evennn02n 12047 nn0ehalf 12068 nno 12071 nn0oddm1d2 12074 nnoddm1d2 12075 flodddiv4t2lthalf 12104 sqrt2re 12331 sqrt2irrap 12348 slotsdifdsndx 12898 cnfldstr 14114 bl2in 14639 pilem3 15019 pipos 15024 sinhalfpilem 15027 sincosq1lem 15061 sinq12gt0 15066 coseq00topi 15071 coseq0negpitopi 15072 tangtx 15074 sincos4thpi 15076 tan4thpi 15077 sincos6thpi 15078 cosordlem 15085 cos02pilt1 15087 gausslemma2dlem0c 15292 gausslemma2dlem1a 15299 gausslemma2dlem2 15303 gausslemma2dlem3 15304 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgsquadlem1 15318 lgsquadlem2 15319 2lgslem1a1 15327 2lgslem1a2 15328 2lgslem1c 15331 2lgslem3a1 15338 ex-fl 15371 | 
| Copyright terms: Public domain | W3C validator |