| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3lt4 | GIF version | ||
| Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 3lt4 | ⊢ 3 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9180 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1 | ltp1i 9048 | . 2 ⊢ 3 < (3 + 1) |
| 3 | df-4 9167 | . 2 ⊢ 4 = (3 + 1) | |
| 4 | 2, 3 | breqtrri 4109 | 1 ⊢ 3 < 4 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4082 (class class class)co 6000 1c1 7996 + caddc 7998 < clt 8177 3c3 9158 4c4 9159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-2 9165 df-3 9166 df-4 9167 |
| This theorem is referenced by: 2lt4 9280 3lt5 9283 3lt6 9288 3lt7 9294 3lt8 9301 3lt9 9309 3halfnz 9540 3lt10 9710 fz0to4untppr 10316 fldiv4p1lem1div2 10520 ef01bndlem 12262 sin01bnd 12263 flodddiv4 12442 starvndxnmulrndx 13172 srngstrd 13174 dveflem 15394 tangtx 15506 gausslemma2dlem4 15737 2lgslem3b 15767 2lgslem3d 15769 ex-fl 16047 |
| Copyright terms: Public domain | W3C validator |