| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3lt4 | GIF version | ||
| Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 3lt4 | ⊢ 3 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9109 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1 | ltp1i 8977 | . 2 ⊢ 3 < (3 + 1) |
| 3 | df-4 9096 | . 2 ⊢ 4 = (3 + 1) | |
| 4 | 2, 3 | breqtrri 4070 | 1 ⊢ 3 < 4 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4043 (class class class)co 5943 1c1 7925 + caddc 7927 < clt 8106 3c3 9087 4c4 9088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-iota 5231 df-fv 5278 df-ov 5946 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-2 9094 df-3 9095 df-4 9096 |
| This theorem is referenced by: 2lt4 9209 3lt5 9212 3lt6 9217 3lt7 9223 3lt8 9230 3lt9 9238 3halfnz 9469 3lt10 9639 fz0to4untppr 10245 fldiv4p1lem1div2 10446 ef01bndlem 12009 sin01bnd 12010 flodddiv4 12189 starvndxnmulrndx 12918 srngstrd 12920 dveflem 15140 tangtx 15252 gausslemma2dlem4 15483 2lgslem3b 15513 2lgslem3d 15515 ex-fl 15594 |
| Copyright terms: Public domain | W3C validator |