| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3lt4 | GIF version | ||
| Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 3lt4 | ⊢ 3 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9140 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1 | ltp1i 9008 | . 2 ⊢ 3 < (3 + 1) |
| 3 | df-4 9127 | . 2 ⊢ 4 = (3 + 1) | |
| 4 | 2, 3 | breqtrri 4081 | 1 ⊢ 3 < 4 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4054 (class class class)co 5962 1c1 7956 + caddc 7958 < clt 8137 3c3 9118 4c4 9119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-xp 4694 df-iota 5246 df-fv 5293 df-ov 5965 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-2 9125 df-3 9126 df-4 9127 |
| This theorem is referenced by: 2lt4 9240 3lt5 9243 3lt6 9248 3lt7 9254 3lt8 9261 3lt9 9269 3halfnz 9500 3lt10 9670 fz0to4untppr 10276 fldiv4p1lem1div2 10480 ef01bndlem 12152 sin01bnd 12153 flodddiv4 12332 starvndxnmulrndx 13061 srngstrd 13063 dveflem 15283 tangtx 15395 gausslemma2dlem4 15626 2lgslem3b 15656 2lgslem3d 15658 ex-fl 15831 |
| Copyright terms: Public domain | W3C validator |