| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3lt4 | GIF version | ||
| Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 3lt4 | ⊢ 3 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9066 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1 | ltp1i 8934 | . 2 ⊢ 3 < (3 + 1) |
| 3 | df-4 9053 | . 2 ⊢ 4 = (3 + 1) | |
| 4 | 2, 3 | breqtrri 4061 | 1 ⊢ 3 < 4 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4034 (class class class)co 5923 1c1 7882 + caddc 7884 < clt 8063 3c3 9044 4c4 9045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5926 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-2 9051 df-3 9052 df-4 9053 |
| This theorem is referenced by: 2lt4 9166 3lt5 9169 3lt6 9174 3lt7 9180 3lt8 9187 3lt9 9195 3halfnz 9425 3lt10 9595 fz0to4untppr 10201 fldiv4p1lem1div2 10397 ef01bndlem 11923 sin01bnd 11924 flodddiv4 12103 starvndxnmulrndx 12831 srngstrd 12833 dveflem 14972 tangtx 15084 gausslemma2dlem4 15315 2lgslem3b 15345 2lgslem3d 15347 ex-fl 15381 |
| Copyright terms: Public domain | W3C validator |