| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le2 | GIF version | ||
| Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 | ⊢ 0 ≤ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 8536 | . . 3 ⊢ 0 ≤ 1 | |
| 2 | 1re 8053 | . . . 4 ⊢ 1 ∈ ℝ | |
| 3 | 2, 2 | addge0i 8544 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
| 4 | 1, 1, 3 | mp2an 426 | . 2 ⊢ 0 ≤ (1 + 1) |
| 5 | df-2 9077 | . 2 ⊢ 2 = (1 + 1) | |
| 6 | 4, 5 | breqtrri 4070 | 1 ⊢ 0 ≤ 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4043 (class class class)co 5934 0cc0 7907 1c1 7908 + caddc 7910 ≤ cle 8090 2c2 9069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-cnv 4681 df-iota 5229 df-fv 5276 df-ov 5937 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-2 9077 |
| This theorem is referenced by: expubnd 10722 4bc2eq6 10900 sqrt4 11277 sqrt2gt1lt2 11279 amgm2 11348 bdtrilem 11469 ege2le3 11901 cos2bnd 11990 evennn2n 12113 6gcd4e2 12235 sqrt2irrlem 12402 sqrt2irraplemnn 12420 oddennn 12682 sincos4thpi 15230 lgslem1 15395 m1lgs 15480 2lgslem1a1 15481 2lgslem4 15498 |
| Copyright terms: Public domain | W3C validator |