| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le2 | GIF version | ||
| Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 | ⊢ 0 ≤ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 8525 | . . 3 ⊢ 0 ≤ 1 | |
| 2 | 1re 8042 | . . . 4 ⊢ 1 ∈ ℝ | |
| 3 | 2, 2 | addge0i 8533 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
| 4 | 1, 1, 3 | mp2an 426 | . 2 ⊢ 0 ≤ (1 + 1) |
| 5 | df-2 9066 | . 2 ⊢ 2 = (1 + 1) | |
| 6 | 4, 5 | breqtrri 4061 | 1 ⊢ 0 ≤ 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4034 (class class class)co 5925 0cc0 7896 1c1 7897 + caddc 7899 ≤ cle 8079 2c2 9058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-2 9066 |
| This theorem is referenced by: expubnd 10705 4bc2eq6 10883 sqrt4 11229 sqrt2gt1lt2 11231 amgm2 11300 bdtrilem 11421 ege2le3 11853 cos2bnd 11942 evennn2n 12065 6gcd4e2 12187 sqrt2irrlem 12354 sqrt2irraplemnn 12372 oddennn 12634 sincos4thpi 15160 lgslem1 15325 m1lgs 15410 2lgslem1a1 15411 2lgslem4 15428 |
| Copyright terms: Public domain | W3C validator |