![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0le2 | GIF version |
Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
Ref | Expression |
---|---|
0le2 | ⊢ 0 ≤ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le1 8056 | . . 3 ⊢ 0 ≤ 1 | |
2 | 1re 7584 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | 2, 2 | addge0i 8064 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
4 | 1, 1, 3 | mp2an 418 | . 2 ⊢ 0 ≤ (1 + 1) |
5 | df-2 8579 | . 2 ⊢ 2 = (1 + 1) | |
6 | 4, 5 | breqtrri 3892 | 1 ⊢ 0 ≤ 2 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3867 (class class class)co 5690 0cc0 7447 1c1 7448 + caddc 7450 ≤ cle 7620 2c2 8571 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-xp 4473 df-cnv 4475 df-iota 5014 df-fv 5057 df-ov 5693 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-2 8579 |
This theorem is referenced by: expubnd 10143 4bc2eq6 10313 sqrt4 10611 sqrt2gt1lt2 10613 amgm2 10682 bdtrilem 10801 ege2le3 11125 cos2bnd 11215 evennn2n 11325 6gcd4e2 11426 sqrt2irrlem 11582 sqrt2irraplemnn 11599 oddennn 11647 |
Copyright terms: Public domain | W3C validator |