Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0le2 | GIF version |
Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
Ref | Expression |
---|---|
0le2 | ⊢ 0 ≤ 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le1 8379 | . . 3 ⊢ 0 ≤ 1 | |
2 | 1re 7898 | . . . 4 ⊢ 1 ∈ ℝ | |
3 | 2, 2 | addge0i 8387 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
4 | 1, 1, 3 | mp2an 423 | . 2 ⊢ 0 ≤ (1 + 1) |
5 | df-2 8916 | . 2 ⊢ 2 = (1 + 1) | |
6 | 4, 5 | breqtrri 4009 | 1 ⊢ 0 ≤ 2 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3982 (class class class)co 5842 0cc0 7753 1c1 7754 + caddc 7756 ≤ cle 7934 2c2 8908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-2 8916 |
This theorem is referenced by: expubnd 10512 4bc2eq6 10687 sqrt4 10989 sqrt2gt1lt2 10991 amgm2 11060 bdtrilem 11180 ege2le3 11612 cos2bnd 11701 evennn2n 11820 6gcd4e2 11928 sqrt2irrlem 12093 sqrt2irraplemnn 12111 oddennn 12325 sincos4thpi 13401 lgslem1 13541 |
Copyright terms: Public domain | W3C validator |