ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0le2 GIF version

Theorem 0le2 9125
Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
0le2 0 ≤ 2

Proof of Theorem 0le2
StepHypRef Expression
1 0le1 8553 . . 3 0 ≤ 1
2 1re 8070 . . . 4 1 ∈ ℝ
32, 2addge0i 8561 . . 3 ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1))
41, 1, 3mp2an 426 . 2 0 ≤ (1 + 1)
5 df-2 9094 . 2 2 = (1 + 1)
64, 5breqtrri 4070 1 0 ≤ 2
Colors of variables: wff set class
Syntax hints:   class class class wbr 4043  (class class class)co 5943  0cc0 7924  1c1 7925   + caddc 7927  cle 8107  2c2 9086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-iota 5231  df-fv 5278  df-ov 5946  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-2 9094
This theorem is referenced by:  expubnd  10739  4bc2eq6  10917  sqrt4  11300  sqrt2gt1lt2  11302  amgm2  11371  bdtrilem  11492  ege2le3  11924  cos2bnd  12013  evennn2n  12136  6gcd4e2  12258  sqrt2irrlem  12425  sqrt2irraplemnn  12443  oddennn  12705  sincos4thpi  15254  lgslem1  15419  m1lgs  15504  2lgslem1a1  15505  2lgslem4  15522
  Copyright terms: Public domain W3C validator