| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le2 | GIF version | ||
| Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 | ⊢ 0 ≤ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 8624 | . . 3 ⊢ 0 ≤ 1 | |
| 2 | 1re 8141 | . . . 4 ⊢ 1 ∈ ℝ | |
| 3 | 2, 2 | addge0i 8632 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
| 4 | 1, 1, 3 | mp2an 426 | . 2 ⊢ 0 ≤ (1 + 1) |
| 5 | df-2 9165 | . 2 ⊢ 2 = (1 + 1) | |
| 6 | 4, 5 | breqtrri 4109 | 1 ⊢ 0 ≤ 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4082 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 ≤ cle 8178 2c2 9157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-2 9165 |
| This theorem is referenced by: expubnd 10813 4bc2eq6 10991 sqrt4 11553 sqrt2gt1lt2 11555 amgm2 11624 bdtrilem 11745 ege2le3 12177 cos2bnd 12266 evennn2n 12389 6gcd4e2 12511 sqrt2irrlem 12678 sqrt2irraplemnn 12696 oddennn 12958 sincos4thpi 15508 lgslem1 15673 m1lgs 15758 2lgslem1a1 15759 2lgslem4 15776 |
| Copyright terms: Public domain | W3C validator |