ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0le2 GIF version

Theorem 0le2 9097
Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
0le2 0 ≤ 2

Proof of Theorem 0le2
StepHypRef Expression
1 0le1 8525 . . 3 0 ≤ 1
2 1re 8042 . . . 4 1 ∈ ℝ
32, 2addge0i 8533 . . 3 ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1))
41, 1, 3mp2an 426 . 2 0 ≤ (1 + 1)
5 df-2 9066 . 2 2 = (1 + 1)
64, 5breqtrri 4061 1 0 ≤ 2
Colors of variables: wff set class
Syntax hints:   class class class wbr 4034  (class class class)co 5925  0cc0 7896  1c1 7897   + caddc 7899  cle 8079  2c2 9058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-iota 5220  df-fv 5267  df-ov 5928  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-2 9066
This theorem is referenced by:  expubnd  10705  4bc2eq6  10883  sqrt4  11229  sqrt2gt1lt2  11231  amgm2  11300  bdtrilem  11421  ege2le3  11853  cos2bnd  11942  evennn2n  12065  6gcd4e2  12187  sqrt2irrlem  12354  sqrt2irraplemnn  12372  oddennn  12634  sincos4thpi  15160  lgslem1  15325  m1lgs  15410  2lgslem1a1  15411  2lgslem4  15428
  Copyright terms: Public domain W3C validator