| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le2 | GIF version | ||
| Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0le2 | ⊢ 0 ≤ 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le1 8553 | . . 3 ⊢ 0 ≤ 1 | |
| 2 | 1re 8070 | . . . 4 ⊢ 1 ∈ ℝ | |
| 3 | 2, 2 | addge0i 8561 | . . 3 ⊢ ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1)) |
| 4 | 1, 1, 3 | mp2an 426 | . 2 ⊢ 0 ≤ (1 + 1) |
| 5 | df-2 9094 | . 2 ⊢ 2 = (1 + 1) | |
| 6 | 4, 5 | breqtrri 4070 | 1 ⊢ 0 ≤ 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4043 (class class class)co 5943 0cc0 7924 1c1 7925 + caddc 7927 ≤ cle 8107 2c2 9086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-iota 5231 df-fv 5278 df-ov 5946 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-2 9094 |
| This theorem is referenced by: expubnd 10739 4bc2eq6 10917 sqrt4 11300 sqrt2gt1lt2 11302 amgm2 11371 bdtrilem 11492 ege2le3 11924 cos2bnd 12013 evennn2n 12136 6gcd4e2 12258 sqrt2irrlem 12425 sqrt2irraplemnn 12443 oddennn 12705 sincos4thpi 15254 lgslem1 15419 m1lgs 15504 2lgslem1a1 15505 2lgslem4 15522 |
| Copyright terms: Public domain | W3C validator |