ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0le2 GIF version

Theorem 0le2 9196
Description: 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
0le2 0 ≤ 2

Proof of Theorem 0le2
StepHypRef Expression
1 0le1 8624 . . 3 0 ≤ 1
2 1re 8141 . . . 4 1 ∈ ℝ
32, 2addge0i 8632 . . 3 ((0 ≤ 1 ∧ 0 ≤ 1) → 0 ≤ (1 + 1))
41, 1, 3mp2an 426 . 2 0 ≤ (1 + 1)
5 df-2 9165 . 2 2 = (1 + 1)
64, 5breqtrri 4109 1 0 ≤ 2
Colors of variables: wff set class
Syntax hints:   class class class wbr 4082  (class class class)co 6000  0cc0 7995  1c1 7996   + caddc 7998  cle 8178  2c2 9157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-iota 5277  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-2 9165
This theorem is referenced by:  expubnd  10813  4bc2eq6  10991  sqrt4  11553  sqrt2gt1lt2  11555  amgm2  11624  bdtrilem  11745  ege2le3  12177  cos2bnd  12266  evennn2n  12389  6gcd4e2  12511  sqrt2irrlem  12678  sqrt2irraplemnn  12696  oddennn  12958  sincos4thpi  15508  lgslem1  15673  m1lgs  15758  2lgslem1a1  15759  2lgslem4  15776
  Copyright terms: Public domain W3C validator