ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n2dvds3 GIF version

Theorem n2dvds3 11623
Description: 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.)
Assertion
Ref Expression
n2dvds3 ¬ 2 ∥ 3

Proof of Theorem n2dvds3
StepHypRef Expression
1 2z 9094 . . . 4 2 ∈ ℤ
2 iddvds 11517 . . . 4 (2 ∈ ℤ → 2 ∥ 2)
31, 2ax-mp 5 . . 3 2 ∥ 2
4 3m1e2 8852 . . 3 (3 − 1) = 2
53, 4breqtrri 3955 . 2 2 ∥ (3 − 1)
6 3z 9095 . . 3 3 ∈ ℤ
7 oddm1even 11583 . . 3 (3 ∈ ℤ → (¬ 2 ∥ 3 ↔ 2 ∥ (3 − 1)))
86, 7ax-mp 5 . 2 (¬ 2 ∥ 3 ↔ 2 ∥ (3 − 1))
95, 8mpbir 145 1 ¬ 2 ∥ 3
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wcel 1480   class class class wbr 3929  (class class class)co 5774  1c1 7633  cmin 7945  2c2 8783  3c3 8784  cz 9066  cdvds 11504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-n0 8990  df-z 9067  df-dvds 11505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator