| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > n2dvds3 | GIF version | ||
| Description: 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.) |
| Ref | Expression |
|---|---|
| n2dvds3 | ⊢ ¬ 2 ∥ 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 9354 | . . . 4 ⊢ 2 ∈ ℤ | |
| 2 | iddvds 11969 | . . . 4 ⊢ (2 ∈ ℤ → 2 ∥ 2) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 2 ∥ 2 |
| 4 | 3m1e2 9110 | . . 3 ⊢ (3 − 1) = 2 | |
| 5 | 3, 4 | breqtrri 4060 | . 2 ⊢ 2 ∥ (3 − 1) |
| 6 | 3z 9355 | . . 3 ⊢ 3 ∈ ℤ | |
| 7 | oddm1even 12040 | . . 3 ⊢ (3 ∈ ℤ → (¬ 2 ∥ 3 ↔ 2 ∥ (3 − 1))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (¬ 2 ∥ 3 ↔ 2 ∥ (3 − 1)) |
| 9 | 5, 8 | mpbir 146 | 1 ⊢ ¬ 2 ∥ 3 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 1c1 7880 − cmin 8197 2c2 9041 3c3 9042 ℤcz 9326 ∥ cdvds 11952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-n0 9250 df-z 9327 df-dvds 11953 |
| This theorem is referenced by: 2lgsoddprmlem3 15352 |
| Copyright terms: Public domain | W3C validator |